Main Article Content

Abstract

[EXPLORATION AND VIRULENT TEST OF MAIZE ENDOPHYTE Bacillus sp. AGAINST MAIZE SHEATH BLIGHT]. Capability of endophytic bacterial, effectivity, and its effect on R. solani. and on maize seedlings growth were investigated from April 2018 to January 2019. Exploration of endophytes bacteria in maize was taken from Banyumas Regency (Sumbang, Kembaran, Baturraden) and Purbalingga Regency (Padamara, Bojongsari, Pratin). Taking plant samples using Purposive Random Sampling and Diagonal Sampling methods. Completely randomized design was used in in vitro test with 16 treatments repeated twice. Completely randomized block design was used in in planta experiment with 5 treatments repeated 5 times. The treatment consisted of control, fungiside (mankozeb), and 2 isolates of endophytes bacteria performing the best in vitro result. Variables observed included characteristics of endophytic bacteria and pathogenic fungi, inhibition diameter, incubation period, disease intensity, incidence of disease, AUDPC, plant height, leaf number, root length, plant fresh weight, canopy fresh weight, and root fresh weight. Resultshowed that the exploration obtained 15 endophytic Bacillus sp. isolates. The PD A.4 and BK A.1 isolates werw able to inhibit the growth of pathogenic fungi in-vitro by 56.93 and 51.5%, respectively. The soaking treatment using BK A1 was able to reduce disease intensity by 59.377%, and AUDPC value 34.19%. Endophytic bacteria influence plant height, plant fresh weight, canopy fresh weight, and fresh weight of roots respectively as 89.17 cm, 126.06 g, 106.67 g and 19.4 g.

Article Details

How to Cite
Saputri, A., Soesanto, L., Umayah, A., & Sarjito, A. (2020). EKSPLORASI DAN UJI VIRULENSI BAKTERI Bacillus sp. ENDOFIT JAGUNG TERHADAP PENYAKIT BUSUK PELEPAH JAGUNG. Jurnal Ilmu-Ilmu Pertanian Indonesia, 22(2), 70–78. https://doi.org/10.31186/jipi.22.2.70-78

References

  1. Andersen, E.J., Ali, S., Byamukama, E., Yen, Y., & Nepalm M.P.. (2018). Disease resistance mechanisms in plants. Genes (Basel). 9(7): 339. DOI: 10.3390/genes9070339.
  2. Asmaliyah, A., Lukman, H., & Mindawati, N. (2016). Pengaruh teknik persiapan lahan terhadap serangan hama penyakit pada tegakan bambang lanang. Jurnal Penelitian Hutan Tanaman 13 (2): 139-155.
  3. Bantacut, T., Firdaus, Y.R., & Akbar, M.T. (2015). Pengembangan jagung untuk ketahanan pangan, industri dan ekonomi. Jurnal Pangan 24(2): 135-148.
  4. Beveridge, T.J. (2001). Use of the gram stain in microbiology. Biotech Histochem 76(3): 111-118.
  5. BPS. (2016). Luas panen, produksi, dan produktivitas jagung dan kedelai menurut kabupaten/ kota di Provinsi Jawa Tengah, 2015. Badan Pusat Statistik Jawa Tengah. (On-line), https://jateng.bps.go.id/statictable/2016/08/22/1312/luas-panen-produksi-dan-produktivitas-jagung-dan-kedelai-menurut -kabupaten-kota-di-provinsi-jawa-tengah-2015.html diakses 14 Agustus 2018.
  6. Brittain, C.A., Vighi, M., Bommarco, R., Settele, J., & Potts, S.G. (2011). Impacts of a pesticide on pollinator species richness at different spatial scales. Basic and Applied Ecology 11(2), 106-115. Doi: 10.1016/j.baae.2009.11.007.
  7. Bruisson, S., Zufferey, M., Haridon, F.L., Trutmann, E., Anand, A., Dutartre, A., De Vrieze, M., & Weisskopf, L. (2019). Endophytes and epiphytes from the grapevine leaf microbiome as potential biocontrol agents against phytopathogens. Front. Microbiol., 29 November 2019 | https://doi.org/10.3389/fmicb.2019.02726.
  8. Byrd, A.L. & Segre, J.A. (2016). Adapting Koch's postulates. Science 351(6270): 224-226. DOI: 10.1126/science.aad6753.
  9. de Souza, M.M., Prietto, L.. Ribeiro, A.C.. de Souza, T.D.. & Badiale-Furlong, E. (2011). Assessment of the antifungal activity of Spirulina platensis phenolic extract against Aspergillus flavus. Ciência e Agrotecnologia 35(6). DOI: 10.1590/S1413-70542011000600003.
  10. Domsch, K.H., Gams, W., & Anderson, T.H. (1980). Compedium of Soil Fungi. Academic Press. New York. 860 pp.
  11. Fira, D., Dimki?, I., Beri?, T., Lozo, J., & Stankovi?, S. (2018). Biological control of plant pathogens by Bacillus species. Journal of Biotechnology 285: 44-55. DOI: 10.1016/j.jbiotec.2018.07.044.
  12. Frederiksen, R.F., Paspaliari, D.K., Larsen, T., Storgaard, B.G., Larsen, M.H., Ingmer, H., Palcic, M.M., & Leisner, J.J. (2013). Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology 159, 833-847. Doi: 10.1099/mic.0.051839-0.
  13. Gilbert, G.S. & Parker, I.M. (2010). Rapid evolution in a plant-pathogen interaction and the consequences for introduced host species. Evol Appl. 3(2): 144–156. DOI: 10.1111/j.1752-4571.2009.00107.x.
  14. Gopireddy, B.M., Devi, G.U., Kumar, K.V., Babu, T.R., & Naidu, T.C.M. (2017). Cultural and morphological characterization of Rhizoctonia solani f. sp. sasakii isolates collected from different districts of Andhra Pradesh. International Journal of Current Microbiology and Applied Sciences 6(11): 3457-3469. DOI:10.20546/ijcmas.2017.611.407.
  15. Grobelak, A. & Hiller, J. (2017). Bacterial siderophores promote plant growth: Screening of catechol and hydroxamate siderophores. International Journal of Phytoremediation 19(9): 825-833. DOI:10.1080/15226514.2017.1290581.
  16. Gupta, G., Parihar, S.S., Ahirwar, N.K., Snehi, S.K., & Singh, V. (2015). Plant Growth Promoting Rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. Journal of Microbial & Biochemical Technology 7(2): 096-102. DOI:10.4172/1948-5948.1000188.
  17. Hajiegharai, B., Torabi-giglou, M., Mohammadi, M.R., & Davari, M. (2008). Biological potential of some Iranian Trichoderma isolates in the control of soil born plant pathogenic fungi. African Journal of Biotechnology 7(8): 967-972.
  18. Hardoim, P.R., van Overbeek, L.S., Berg, G., Pirttilä, A.M., Compant, S., Campisano, A., Döring, M., & Sessitsch, A (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79: 293–320. doi: 10.1128/MMBR.00050-14.
  19. Hasanain, A.M. (2017). Development of a cheap media for Bacillus thuringiensis growth. Int J Biotech & Bioeng. 3(6): 221-229. DOI:10.25141/2475-3432-2017-6.0216.
  20. Husen, E. (2003). Screening of soil bacteria for plant growth promotion activities in vitro. Indonesian Journal of Agricultural Science. 4(1):27-31.
  21. Jeger, M.J. & Viljanen-Rollinson, S.L.H. (2001). The use of the area under disease-progress curve (audpc) to asses quantitive disease resistance in crop cultivars. Theoretical Applied Genetics 102 (1): 32 – 40. DOI: 10.1007/s001220051615.
  22. Junior, F.C., de Oliveira, A.G., de Oliveira, L.A., dos Santos, G.R., Chagas, L.F.B., da Silva, A.L.L., & da Luz Costa, J. (2015). Production of indole-3-acetic acid by Bacillus isolated from different soils. Bulgarian Journal of Agricultural Science 21(2): 282–287.
  23. Katz, E. & Demain, A.L. (1997). The peptide antibiotics of Bacillus, chemistry, biogenesis, and possible functions. Bacteriol Rev. 41: 449-474.
  24. Kementerian Pertanian. (2016). Outlook Kkomoditas Pertanian Sub Sektor Tanaman Pangan: Jagung. Pusat Data dan Sistem Informasi Pertanian, Kementerian Pertanian, Jakarta. (On-line), http://epublikasi.setjen.pertanian .go.id/arsip-outlook/81-outlook-tanaman-pangan/432-outlook-jagung-2016 diakses 18 Juli 2018.
  25. Keswani, C., Singh, H.B., Hermosa, R., García-Estrada, C., Caradus, J., He, Y.-W., Mezaache-Aichour, S., Glare, T.R., Borriss, R., Vinale, F., &
  26. Sansinenea, E. (2019). Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents. Applied Microbiology and Biotechnology 103: 9287–9303. DOI: 10.1007/s00253-019-10209-2.
  27. Király, L., Barna, B., & Király, Z. (2007). Plant resistance to pathogen infection: forms and mechanisms of innate and acquired resistance. Journal of Phytopathology 155(7?8): 385-396. DOI: 10.1111/j.1439-0434.2007.01264.x.
  28. Kuta, F.A., Nimzing, L., & Orka’a, P. (2009). Screening of Bacillus species with potentials of antibiotics production. Applied Medical Informatics 24(1-2): 42-46.
  29. Lahre, S.K., Khare, N., Lakpale, N., & Chaliganjewar, S.D. (2012). Efficacy of bio-agents and organic amendments against Sclerotium rolfsii in chickpea. Journal of Plant Disease Sciences 7 (1): 32-34.
  30. Lee, S.W., Lee, S.H., Lan, J.M., Park, K.H., Jang, I.B., & Kim, K.H. (2016). Control of soil-borne pathogens in ginseng cultivation through the use of cultured green manure crop and solarization in greenhouse facilities. Korean Journal of Medicinal Crop Science 24(2): 136-142. Doi: 10.7783/kjmcs.2016.24.2.136.
  31. Lu, Z., Guo, W., & Liu, C. (2018). Isolation, identification and characterization of novel Bacillus subtilis. J Vet Med Sci. 80(3): 427–433. DOI:10.1292/jvms.16-0572.
  32. Mulyati, S. 2009. Pengendalian penyakit hawar pelepah daun (Rhizoctonia solani) menggunakan beberapa agnsia hayati golongan cendawan pada tanaman jagung (Zea mays). J. Agronomi 13(2): 37-43.
  33. Noble, R. (2011). Risks and benefits of soil amendment with composts in relation to plant pathogens. Australasian Plant Pathology 40(2): 157–167. Doi: 10.1007/s13313-010-0025-7.
  34. Noordzij, M., Dekker, F.W., Zoccali, C., & Jager, K.J. (2010). Measures of disease frequency: prevalence and incidence. Nephron Clinical Practice 115: c17–c20. DOI: 10.1159/000286345.
  35. Nuryani, W., Yusuf, E.S., Djatnika, I., Hanudin, & Marwoto, B. (2011). Pengendalian penyakit layu fusarium pada subang gladiol dengan pengasapan dan biopestisida. J. Hortikultura. 21(1): 40-50.
  36. Oktari, A., Supriatin, Y., Kamal, M., & Syafrullah, H. (2017). The bacterial endospore stain on schaeffer fulton using variation of methylene blue solution. IOP Conf. Series: Journal of Physics: Conf. Series 812(2017): 012066. DOI:10.1088/1742-6596/812/1/012066.
  37. Orozco-Avitia, A., Esqueda, M., Meza, A., Tiznado, M., Gutierrez, A., & Gardea, A. (2013). Temperature effect on Rhizoctonia solani analyzed by microcalorimetry. American Journal of Agricultural and Biological Sciences 8 (2): 162-166. DOI: 10.3844/ajabssp.2013.162.166.
  38. Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: A review. Biotechnology & Biotechnological Equipment 31(3): 446-459, DOI: 10.1080/13102818.2017.1286950.
  39. Sharma, L., Goswami, S., & Nagrale, D.T. (2013). Culture and physiological variability in Rhizoctonia solani, responsible for foliarand lesions on aerial part of soybean. Journal of Applied and Natural Science 5(1): 41-46.
  40. Simarmata, R., Lekatompeassy, S., & Sukiman, H. (2007). Isolasi mikroba endofitik dari tanaman obat sambung nyawa (Gynura procumbens) dan analisis potensinya sebagai antimikroba. Berk. Penel. Hayati. 13: 85-90.
  41. Sousa, A.M., Machado, I., Nicolau, A., & Pereira, M.O. (2013). Improvements on colony morphology identification towardsbacterial profiling. Journal of Microbiological Methods 95: 327-335. DOI: 10.1016/j.mimet.2013.09.020.
  42. Suryawanshi, P.P., Krishnaraj, P.U., & Prashanthi, S.K. (2019). Morphological and molecular characterization of Rhizoctonia solani causing sheath blight in rice. International Journal of Current Microbiology and Applied Sciences 8(01): 1714-1721. DOI: 10.20546/ijcmas.2019.801.182.
  43. Taherdoost, H. (2016). Sampling methods in research methodology; How to choose a sampling technique for research. International Journal of Academic Research in Management (IJARM) 5(2): 18-27.
  44. Wagi, S. & Ahmed, A. (2019). Bacillus spp.: potent microfactories of bacterial IAA. Peer J. 7: e7258. DOI: 10.7717/peerj.7258.
  45. Watanabe, T. (2002). Pictorial Atlas of Soil and Seed Fungi Morphologies of Cultured Fungi and Key to Species 2nd Edition. CRC Press. Boca Raton, USA. 504 pp.
  46. Whittenbury, R. (1964). Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. Microbiology 35(1): 13-26. DOI: 10.1099/00221287-35-1-13.
  47. Yusra, F. Azima, Novelina, & Periadnadi. (2014). Isolasi dan identifikasi mikroflora indigenous dalam budu. Agritech. 34(3): 316-321.