Main Article Content

Abstract

[RESPONSE OF THE NUTRITION LEVELS OF SUGARCANE IN THREE ORDERS OF SOIL DUE TO SUGARCANE MONOCULTURE CULTIVATION]. Monoculture cultivation will have an influence not only on soil conditions but also on plant growth, nutrient levels in plant tissues, and yields. The purpose of this study was (1)  to determine the effect of monoculture sugarcane cultivation on nutrient levels of the roots, stalks, and leaves of sugarcane plants, (2) to determine the relationship between nutrient levels in sugarcane tissue and sugarcane productivity, and yield in three different soil orders. This research had two factors, namely soil order (Entisol, Inceptisol, and Vertisol) and sugarcane monoculture period (1–10, 11–20, and 21–30 years). The sugar cane used was the ratoon of two sugarcane. Parameters observed included nutrient levels of N, P, K, B, and Zn in roots, stalks, and leaves of sugarcane, and productivity of plants. Data analysis was performed with ANOVA at 5% level and regression correlation analysis. The results showed that the levels of N (leaves, stalks, and roots), levels of P (leaves, stalks, and roots), levels of leaf K, levels of B (leaves and roots), and level of Zn of sugarcane roots were influenced by the interaction between soil order and sugarcane monoculture period. Zn and K levels in sugarcane leaves had a strong and significant correlation with sugarcane productivity (r=0.778* and r=0.699*), while sugarcane yields had a strong and significant correlation with N content of root (r=0.752*). This result indicates that the soil order and the mass of sugarcane monoculture have an effect on the nutrient content in the plant and this nutrient content affects the productivity and yield. The availability of macro and micronutrients needs to be considered in monoculture sugarcane planting techniques to obtain optimal and sustainable sugarcane yields.

Article Details

How to Cite
Kusumawati, A., Hanudin, E., Purwanto, B. H., & Nurudin, M. (2022). RESPON KADAR HARA TANAMAN TEBU DI TIGA ORDO AKIBAT BUDIDAYA MONOKULTUR TEBU. Jurnal Ilmu-Ilmu Pertanian Indonesia, 24(1), 39–48. https://doi.org/10.31186/jipi.24.1.39-48

References

  1. Alloway, B.j. (1995). Heavy Metals in Soils, Second Edition, Blackie Academic &. Profesional, An Imprint 0f Chapman & Hall, Glasgow.
  2. Amolo, R. A., Sigunga, D. O. & Owuor, P. O. (2014). Evaluation of sugarcane cropping systems in relation to productivity at Kibos in Kenya. International Journal of Agricultural Policy and Research, 2(7), 256–266. DOI: http://www.journalissues.org/ijapr/ .
  3. Barbosa, L. C., de Souza, Z. M., Franco, H. C. J., Otto, R., Neto, J. R., Garside, A. L. & Carvalho, J. L. N. (2018). Soil texture affects root penetration in Oxisols under sugarcane in Brazil. Geoderma Regional, 13, 15–25.
  4. Bramley, R., Ellis, N., Nable, R. & Garside, A. (1996). Changes in soil chemical properties under long-term sugar cane monoculture and their possible role in sugar yield decline. Australian Journal of Soil Research, 34(6), 967–984. DOI: https://doi.org/10.1071/ SR9960967.
  5. Brdar-Jokanovi?, M. (2020). Boron toxicity and deficiency in agricultural plants. International Journal of Molecular Sciences, 21(4). DOI: https:// doi.org/10.3390/ijms21041424.
  6. Britto, D. T. & Kronzucker, H. J. (2008). Cellular mechanisms of potassium transport in plants. Physiologia Plantarum, 133(4), 637–650. DOI: https://doi.org/10.1111/j.1399-3054.2008. 01067.x.
  7. Brown, P. H. & Shelp, B. J. (1997). Boron mobility in plants. Plant and Soil, 193, 85–105. DOI: https://doi.org/10.1023/A.
  8. Cahyani, S., Sudirman, A. & Abdul Azis. (2016). Respons Pertumbuhan vegetatif tanaman tebu t (Saccharum officinarum L.) Ratoon 1 terhadap pemberian kombinasi pupuk organik dan pupuk anorganik. Jurnal Agro Industri Perkebunan, 60(2), 4791–4792. DOI: https://doi.org/ 10. 1063/1.4772547.
  9. Cardozo, N. P. & Sentelhas, P. C. (2013). Climatic effects on sugarcane ripening under the infl uence of cultivars and crop age. Scientia Agricola, 70(6), 449–456. DOI: https:// doi.org/10.1590/S0103-90162013000600011.
  10. De Moraes, E. R., Mageste, J. G., Lana, R. M. Q., Torres, J. L. R., Domingues, L. A. D. S., Lemes, E. M. & De Lima, L. C. (2019). Sugarcane root development and yield under different soil tillage practices. Revista Brasileira de Ciencia Do Solo, 43, 1–10. DOI: https://doi.org/10.1590/ 18069657 rbcs20180090.
  11. Esteban, D. A. A., de Souza, Z. M., Tormena, C. A., Lovera, L. H., de Souza Lima, E., de Oliveira, I. N. & de Paula Ribeiro, N. (2019). Soil compaction, root system and productivity of sugarcane under different row spacing and controlled traffic at harvest. Soil and Tillage Research, 187, 60-71.
  12. Firdaus, G. M. (2018). The effect of biofertilizer and inorganic fertilizer on the vegetative growth of sugarcane (Saccharum officinarum). Journal of Applied and Physical Sciences, 4(1), 1404– 1411. DOI: https://doi.org/10.20474/japs-4.1.2 RESPON KADAR HARA TANAMAN TEBU JIPI. 24(1), 39-48 (2022) 47 .
  13. Franco, H. C. J., Mariano, E., A.C.Vitti, C.E.Faroni, Otto, R. & P.C.O.Trivelin. (2011). Sugarcane response to Boron and Zinc in Southeastern Brazil. Sugar Tech, 13(1), 86–95. DOI: https:// doi.org/10.1007/s12355-010-0057-x.
  14. Hani, E. S. & Mustapit. (2016). Stakeholder Response to the development strategy of sugarcane dry land agriculture in East Java. Agriculture and Agricultural Science Procedia, 9, 469–474. DOI: https:// doi.org/ 10.1016/j.aaspro.2016.02.165.
  15. Harianto, N. & Susilowati, S. H. (2019). Kebijakan dukungan domestik untuk menetralisir dampak negatif penurunan tarif impor terhadap industri gula Indonesia. Jurnal Agro Ekonomi, 36(2), 91. DOI: https://doi.org/10.21082/jae.v36n2.2018. 91-112.
  16. Kadarwati, T. F. (2020). Effect of different levels of potassium on the growth and yield of sugarcane ratoon in inceptisols. IOP Conference Series: Earth and Environmental Science, 418(1), 1–10. DOI: https://doi.org/10.1088/1755-1315/ 418/ 1/012066.
  17. Lal, K. N. & Singh, J. N. (1961). Uptake of phosphorus and its accumulation in component parts of sugarcane as affected by age, phosphorus deficiency and levels of phosphorus. Soil Science and Plant Nutrition, 6(3), 120–126. DOI: https:// doi.org/10.1080/00380768.1961. 10430937.
  18. Leite, J. M., Ciampitti, I. A., Mariano, E., VieiraMegda, M. X. & Trivelin, P. C. O. (2016). Nutrient partitioning and stoichiometry in unburnt sugarcane ratoon at varying yield levels. Frontiers in Plant Science, 7. DOI: https://doi.org/ 10.3389/fpls.2016.00466.
  19. Liferdi, L., Poerwanto, R., Susila, A., Idris, K. & Mangku, I. (2008). Korelasi kadar hara fosfor daun dengan produksi tanaman manggis. Jurnal Hortikultura, 18(3), 85204. DOI: https:// doi.org/10.21082/jhort.v18n3.2008.p.
  20. Marin, F. R., Ignacio, J., Edreira, R., Andrade, J. & Grassini, P. (2019). Field crops research onfarm sugarcane yield and yield components as influenced by number of harvests. Field Crops Research, 240, 134–142. DOI: https://doi.org/ 10.1016/j.fcr.2019.06.011.
  21. Mastur, Syafaruddin & Syakir, M. (2016). Peran dan pengelolaan hara nitrogen pada tanaman tebu untuk peningkatan produktivitas tebu. Perspektif, 14(2), 73. DOI: https://doi.org/ 10.21082/p. v14n2.2015.73-86.
  22. Medina, N. H., Branco, M. L. T., Silveira, M. A. G. da. & Santos, R. B. B. (2013). Dynamic distribution of potassium in sugarcane. Journal of Environmental Radioactivity, 126, 172–175. DOI: https://doi.org/10.1016/j.jenvrad.2013. 08.004.
  23. Mellis, E. V., Quaggio, J. A., Becari, G. R. G., Teixeira, L. A. J., Cantarella, H. & Dias, F. L. F. (2016). Effect of micronutrients soil supplementation on sugarcane in different production environments: cane plant cycle. Agronomy Journal, 108(5), 2060. DOI: https://doi.org/10.2134/agronj 2015.0563.
  24. Mengel, K. & Kirkby, E.A. (1987) Principles of Plant Nutrition. International Potash Institute, Worblaufen-Bern, Switzerland.
  25. Misra, V., Solomon, S., Hashem, A., Abd_Allah, E. F., Al-Arjani, A. F., Mall, A. K., Prajapati, C. P. & Ansari, M. I. (2020). Minimization of post-harvest sucrose losses in drought affected sugarcane using chemical formulation. Saudi Journal of Biological Sciences, 27(1), 309–317. DOI: https://doi.org/10.1016/j.sjbs.2019.09. 028/.
  26. Nastaro, B., Mariano, E., Antunes, R., Cesar, P. & Trivelin, O. (2019). Plant physiology and biochemistry influence of nitrate - ammonium ratio on the growth, nutrition, and metabolism of sugarcane. Plant Physiology and Biochemistry, 139, 246–255. DOI: https://doi.org/10.1016/ .j.plaphy.2019.03.024.
  27. Oliveira, R. I. De, Rodrigo, M., Amaral, F., Soares, C., Freire, F. J., Euzébio, D., Neto, S. & De, E. C. A. (2016). Nutrient partitioning and nutritional requirement in sugarcane. Australian Journal of Crop Science, 10(1), 69–75.
  28. Pancelli, M. A., Prado, R. de M., Flores, R. A., de Almeida, H. J., Moda, L. R. & de Souza Junior, J. P. (2015). Growth, yield and nutrition of sugarcane ratoon as affected by potassium in a mechanized harvesting system. Australian Journal of Crop Science, 9(10), 915–924.
  29. Pembengo, W., Handoko & Suwarto. (2012). Efisiensi penggunaan cahaya matahari oleh tebu pada berbagai tingkat pemupukan nitrogen dan fosfor. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 40(3), 211–217. DOI: https://doi.org/10.24831/jai.v40i3.6828.
  30. Pusdatin. (2017). Outlook Komoditas Pertanian Sub Sektor Perkebunan Tebu. Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal, Kementerian Pertanian. Rahman, M. E., Sinaga, B. M.,
  31. Rerkasem, B. & Jamjod, S. (2004). Boron deficiency in wheat: A review. Field Crops Research, 89 (2–3), 173–186. DOI: https://doi.org/10.1016/ j.fcr.2004.01.022.
  32. Rhodes, R., Miles, N. & Hughes, J. C. (2018). Interactions between potassium, calcium and magnesium in sugarcane grown on two contrasting soils in South Africa. Field Crops Research, 223, 1–11. DOI: https://doi.org/10.1016/j.fcr. 2018.01.001.
  33. Rice, R. W., Gilbert, R. A., & Mccray, J. M. (2010). Nutritional requirements for Florida sugarcane 1. Edis, 2, 1–8.
  34. Richardson, A. E., Barea, J. M., McNeill, A. M. & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 321(1–2), 305–339. DOI: https://doi.org/10.1007/s11104-009-9895-2
  35. Saleem, M. A., Ghaffar, A., Anjum, S. A., Cheema, M. & Bilal, M. F. (2012). Effect of nitrogen on growth and yield of sugarcane. Journal American Society of Sugar Cane Technologists, 32, 75– 93.
  36. Snyman, S. J., Baker, C., Huckett, B. I., McFarlane, S. A., Van Antwerpen, T., Berry, S., Omarjee, J., Rutherford, R. S. & Watt, D. A. (2008). South African sugarcane research institute: embracing biotechnology for crop improvement research. Sugar Tech, 10(1), 1–13. DOI: https://doi.org/10.1007/s12355-008-0001-5.
  37. Subiyakto. (2017). Analisis keragaman parameter penentu rendemen gula kristal putih pada pabrik gula BUMN. M.P.I, 11, 1–10.
  38. Susila & Sinaga, B. M. (2005). Pengembangan industri gula Indonesia yang kompetitif pada situasi persaingan yang adil. Jurnal Litbang Pertanian, 24(1), 1–9.
  39. Thamrin, M., Susanto, S., Susila, A. D. & Sutandi, A. (2016). Hubungan konsentrasi hara nitrogen, fosfor, dan kalium daun dengan produksi buah sebelumnya pada tanaman jeruk Pamelo. Jurnal Hortikultura, 23(3), 225. DOI: https://doi.org/ 10.21082/jhort.v23n3.2013.p225-234.
  40. Tunjungsari, R. (2014). Analisis produksi tebu di Jawa Tengah, JEJAK, Jurnal of Economics and Policy, 7(2), 121-133. DOI: 10.15294jejak.v7i1.3596.
  41. Wibowo, E. (2013). Pola kemitraan antara petani tebu rakyat kredit dan mandiri dengan pabrik gula Modjopanggoong Tulungagung. Jurnal Manajemen Agribisnis, 13(1), 1–12.
  42. Xu, N., Bhadha, J. H., Rabbany, A., Swanson, S., McCray, J. M., Li, Y. C., Strauss, S. L. & Mylavarapu, R. (2021). Crop nutrition and yield response of bagasse application on sugarcane grown on a mineral soil. Agronomy, 11(8), 1–15. DOI: https://doi.org/10.3390/agronomy11081526.