Main Article Content

Abstract

[SPATIAL ANALYSIS OF MATERIAL DISTRIBUTION AND CHEMICAL PROPERTIES OF VOLCANIC ASH FROM THE ERUPTION OF MT. SINABUNG IN 2019]. Mount Sinabung, located in Karo Regency, North Sumatra, first erupted in August 2010 and continued from 2013 to 2022. As one of the parent materials for fertile soil, volcanic ash reserves large amount of nutrients. The research was aimed to determine the chemical characteristics of volcanic ash and to map the distribution of volcanic ash from Mt. Sinabung eruption material in 2019. This study examines 22 samples of the of volcanic ash collected based on a terrestrial survey with the grid method. The results showed that volcanic ash within a radius of 3-5 km from the center of the eruption (total area 1,402.83 ha) have a pH-H2O ranged from 5.30 to 6.27 (acid to slightly acid), Mg > Na > Ca > K, in order of base cations, with moderate to very high criteria, available P ranged from 35 – 165.96 mg/kg (very high), and CEC ranged from 12.92 – 21.78 cmol/kg considered low to moderate. Therefore, the volcanic ash deposits can provide a significant quantity of nutrients for future soil fertility in agricultural areas affected by eruptions.

Article Details

Author Biographies

Saftia Laila Rajmi, Andalas University

Program Studi Ilmu Tanah, Fakultas Pertanian, Universitas Andalas, Limau Manis, Padang, Indonesia

Gusnidar Gusnidar, Andalas University

Program Studi Ilmu Tanah, Fakultas Pertanian, Universitas Andalas, Limau Manis, Padang, Indonesia

Dian Fiantis, Andalas University

Program Studi Ilmu Tanah, Fakultas Pertanian, Universitas Andalas, Limau Manis, Padang, Indonesia
How to Cite
Rajmi, S. L., Gusnidar, G., & Fiantis, D. (2022). ANALISIS SPASIAL SEBARAN MATERIAL DAN SIFAT KIMIA ABU VULKANIS HASIL ERUPSI GUNUNG SINABUNG TAHUN 2019. Jurnal Ilmu-Ilmu Pertanian Indonesia, 24(1), 62–68. https://doi.org/10.31186/jipi.24.1.62-68

References

  1. Anda, M. & Sarwani, M. (2012). Mineralogy, chemical composition, and dissolution of fresh ash eruption: new potential source of nutrients. Soil Science Society of America Journal, 76(2), 733–747.
  2. Balai Penelitian Tanah. (2012). Petunjuk Teknis: Analisis Kimia Tanah, Tanaman, Air dan Pupuk (Edisi 2). Badan Litbang Pertanian, Bogor.
  3. Berger, J. A., Ming, D. W., Morris, R. V, Schmidt, M. E., Clark, B. C., Gellert, R., Thompson, L. M. & VanBommel, S. (2019). The Mobility of Phosphorus and Potassium in Altered Hawaiian Volcanics: Constraints on Fluid Alteration on the Martian Surface. AGU Fall Meeting Abstracts, 2019, P51F-3422.
  4. Fiantis, D, Ginting, F. I., Nelson, M., Van Ranst, E., & Minasny, B. (2021). Geochemical characterization and evolution of soils from Krakatau Islands. Eurasian Soil Science, 1–15.
  5. Fiantis, D, Nelson, M., Shamshuddin, J., Goh, T. B. & Van Ranst, E. (2010). Determination of the geochemical weathering indices and trace elements content of new volcanic ash deposits from Mt. Talang (West Sumatra) Indonesia. Eurasian Soil Science, 43(13), 1477–1485.
  6. Fiantis, D, Nelson, M., Shamshuddin, J., Goh, T. B. & Van Ranst, E. (2011). Changes in the chemical and mineralogical properties of Mt. Talang volcanic ash in West Sumatra during the initial weathering phase. Communications in Soil Science and Plant Analysis, 42(5), 569–585.
  7. Fiantis, Dian, Ginting, F. I., Gusnidar, Nelson, M., & Minasny, B. (2019). Volcanic Ash, insecurity for the people but securing fertile soil for the future. Sustainability (Switzerland), 11(11), 3072. DOI: https://doi.org/10.3390/su1111 30 72.
  8. Fiantis, Dian, Ginting, F. I., Halfero, F., Saputra, A. P., Nelson, M., Van Ranst, E., & Minasny, B. (2021). Geochemical and mineralogical composition of the 2018 volcanic deposits of Mt. Anak Krakatau. Geoderma Regional, 25, e00393.
  9. Fiantis, Dian, Gusnidar, Malone, B., Pallasser, R., Van Ranst, E., & Minasny, B. (2017). Geochemical fingerprinting of volcanic soils used for wetland rice in West Sumatra, Indonesia. Geoderma Regional, 10, 48–63. DOI: https://doi.org/10.1016/j.geodrs.2017.04.004.
  10. Gislason, S. R., Hassenkam, T., Nedel, S., Bovet, N., Eiriksdottir, E. S., Alfredsson, H. A., Hem, C. P., Balogh, Z. I., Dideriksen, K.& Oskarsson, N. (2011). Characterization of Eyjafjallajökull volcanic ash particles and a protocol for rapid risk assessment. Proceedings of the National Academy of Sciences, 108(18), 7307–7312.
  11. Harouiya, N., Chaïrat, C., Köhler, S. J., Gout, R., & Oelkers, E. H. (2007). The dissolution kinetics and apparent solubility of natural apatite in closed reactors at temperatures from 5 to 50 °C and pH from 1 to 6. Chemical Geology, 244(3), 554–568. DOI: https://doi.org/https://doi.org/10.1016/j.chemgeo.2007.07.011.
  12. Hepper, E. N., Buschiazzo, D. E., Hevia, G. G., Urioste, A., & Antón, L. (2006). Clay mineralogy, cation exchange capacity and specific surface area of loess soils with different volcanic ash contents. Geoderma, 135, 216–223.
  13. Hoshyaripour, G., Hort, M., & Langmann, B. (2014). Ash iron mobilization in volcanic eruption plumes. Atmospheric Chemistry & Physics Discussions, 14(23).
  14. Hosokawa, Y., & Onoue, K. (2013). Basic study on effective utilization of newly volcanic ash from Mt. Shinmoedake into concrete. Proceedings of the 3rd International Conference on Sustainable Construction Materials & Technologies, SCMT3 CD-ROM, e408, 1–10.
  15. Ilham, D. J., Kautsar, F. R., Januarti, J., Anggarini, U. & Fiantis, D. (2020). The potential use of volcanic deposits for geopolymer materials. IOP Conference Series: Earth and Environmental Science, 497(1), 12035.
  16. Iturri, L. A. & Buschiazzo, D. E. (2014). Cation exchange capacity and mineralogy of loess soils with different amounts of volcanic ashes. Catena, 121, 81–87.
  17. Latif, D. O., Rifa’i, A. & Suryolelono, K. B. (2016). Chemical characteristics of volcanic ash in Indonesia for soil stabilization: morphology and mineral content. International Journal of Geomate, 11(26), 2606–2610.
  18. Minasny, B., Fiantis, D., Hairiah, K. & Van Noordwijk, M. (2021). Applying volcanic ash to croplands – The untapped natural solution. Soil Security, 3, 100006. DOI: https://doi.org/10.1016/j.soisec.2021.100006.
  19. Murniasih, S., Darsono, D., Sukirno, S. & Saefurrochman, S. (2019). Distribution pattern of volcanic ash essential elements on the top layer of agricultural land Post Merapi Eruption in Sleman. Indonesian Journal of Chemistry, 19, 944. DOI: https://doi.org/10.22146/ijc.38348.
  20. Nakagawa, M. & Ohba, T. (2002). Minerals in volcanic ash 1: Primary minerals and volcanic glass. Global Environmental Research-English Edition, 6(2), 41–52.
  21. Nakamaru, Y. M., Saito, Y., Kobayashi, H., Katougi, S., Kuribara, Y., Sato, K., Tabuchi, H., Hutaya, S. & Komatsu, T. (2008). Evaluation and utilization of the apatite-phosphorus in pyroclastic flow deposits in Abashiri district of eastern Hokkaido, Japan. Journal of Agriculture Science, Tokyo University of Agriculture (Japan).
  22. Nanzyo, M., Takahashi, T., Sato, A., Shoji, S. & Yamada, I. (1997). Dilute acid-soluble phosphorus in fresh air-borne tephras and fixation with an increase in active aluminum and iron. Soil Science and Plant Nutrition, 43(4), 839–848. DOI: https://doi.org/10.1080/00380768. 1997.10414650.
  23. Óskarsson, N. (1980). The interaction between volcanic gases and tephra: fluorine adhering to tephra of the 1970 Hekla eruption. Journal of Volcanology and Geothermal Research, 8(2–4), 251–266.
  24. Pearson, D. & Brooker, R. (2020). The accumulation of molten volcanic ash in jet engines; simulating the role of magma composition, ash particle size and thermal barrier coatings. Journal of Volcanology and Geothermal Research, 389, 106–707.
  25. Pusat Vulkanologi dan Mitigasi Bencana Geologi Indonesia. (2020). Laporan Kebencanaan Geologi, 31 Januari 2020. In Badan Geologi. https://vsi.esdm.go.id/index.php/kegiatan-pvmbg/berita-harian-kebencanaan-geologi/ 2916-laporan-kebencanaan-geologi-31-januari-2020.
  26. Rocha-Campos, A. C., Basei, M. A., Nutman, A. P., Kleiman, L. E., Varela, R., Llambias, E., Canile, F. M. & Da Rosa, O. de C. R. (2011). 30 million years of Permian volcanism recorded in the Choiyoi igneous province (W Argentina) and their source for younger ash fall deposits in the Paraná Basin: SHRIMP U–Pb zircon geochronology evidence. Gondwana Research, 19(2), 509–523.
  27. Schmid, R. (1981). Descriptive nomenclature and classification of pyroclastic deposits and fragments: Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. Geology, 9(1), 41– 43.
  28. Shoji, S. & Takahashi, T. (2002). Environmental and agricultural significance of volcanic ash soils. In Global Environmental Research-English Edition, 6(2), 113–135.
  29. Watson, E. J., Swindles, G. T., Savov, I. P., Lawson, I. T., Connor, C. B. & Wilson, J. A. (2017). Estimating the frequency of volcanic ash clouds over northern Europe. Earth and Planetary Science Letters, 460, 41–49. DOI: https://doi.org/10.1016/J.EPSL.2016.11.054.
  30. Wilcox, R. E. & Coats, R. R. (1959). Some effects of recent volcanic ash falls with especial reference to Alaska. US Government Printing Office Washington, DC.
  31. ?