Main Article Content

Abstract

[PHYSIOLOGICAL RESPONSES AND YIELDS OF FOUR LOCAL GOGO RICE CULTIVARS OF CENTRAL SULAWESI TO DROUGHT STRESS]. Rice is the most important staple food for Indonesians and can be grown in dry land agroecosystems as an upland rice. The research was conducted to study the physiological mechanisms related to drought resistant schemes on four local upland rice cultivars of Central Sulawesi. Field research was carried out using factorial Completely Randomized Block Design (CRBD) with two factors and three blocks as replication. The first factor was four cultivars of upland rice, i.e., Habo, Hiwanggu, Sunggul, and Lambara; while watering intervals of once in one, two, four and eight days was considered as second factor. The observed variables of this experiment were soil moisture, relative water content of leaf, stomatal conductance, concentration of leaf carbon dioxide, transpiration rate, photosynthesis rate, and yield of grain per grove. The collected data were analyzed with regression using independent variables of soil moisture and dependent variables of relative water content on leaf, stomatal conductance, concentration of carbon dioxide on leaf, transpiration rate, photosynthesis rate and yield of grain per grove. The relationship among observed variables was determined using correlation analysis. The results showed that drought resistant upland rice cultivars (Habo and Sunggul) required less optimum soil moisture than those of non-drought resistant cultivars (Hiwanggu and Lambara) to maximize relative water content, stomatal conductance, carbon dioxide, transpiration rate and photosynthesis rate. Soil moisture contributions to maximum yield of grain per grove on Habo, Sunggul, Hiwanggu and Lambara cultivars were 23.41%, 23.00%, 27.14% and 26.67%, respectively.


 

Article Details

Author Biography

Budiastuti Kurniasih, Departemen Budidaya Pertanian, Fakultas Pertanian, Universitas Gadjah Mada, Jln. Flora no. 1, Bulaksumur, Sleman, Yogyakarta 5528

Scopus ID 55623300600

How to Cite
Boy, R., Indra Dewa, D., Susila Putra, E. T., & Kurniasih, B. (2022). TANGGAPAN FISIOLOGIS DAN HASIL EMPAT KULTIVAR PADI GOGO LOKAL SULAWESI TENGAH TERHADAP CEKAMAN KEKERINGAN. Jurnal Ilmu-Ilmu Pertanian Indonesia, 24(2), 132–144. https://doi.org/10.31186/jipi.24.2.132-144

References

  1. Ahmad, M., Zaffar, G., Razvi, S.M., Mir, S.D., Bukhari, S. A. & Habib, M. (2014). Resilience of cereal crops to abiotic stress: A review. Afr J Biotechnol. 13(29), 2908-2921. DOI: https://doi.org/10.5897/AJB2013.13532.
  2. Ali, K., Gujjar, R.S., Niwas, R., Gopal, M. & Tyagi, A. (2011). A rapid method for estimation of abscisic acid and characterization of ABA regulated gene in response to water stress from rice. Am.J Plant Physiol., 6, 144-156. DOI: DOI: 10.3923/ajpp.2011.144.156.
  3. Almeselmani, M., Abdullah, F., Hareri, F., Naaesan, M., Ammar, M. A., Kanbar, O.Z. & Saud, A. A. (2011). Effect of drought on different pysiologycal characters and yield component in defferent varieties of Syrian durum wheat. Journal of Agricultural Science, 3(3), 127-133. DOI:10.5539/jas.v3n3p127.
  4. Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C. & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026-2032. DOI: DOI: 10.5897/AJAR10.027.
  5. Aref, I., Atta, H.E., Obeid, M.E., Ahmed, A., Khan, P. & Iqbal, M. (2013). Effect of water stress on relative water and chlorophyll contents of Juniperus procera Hochst. ex Endlicher in Saudi Arabia. Life Sci J., 10(4), 681-685.
  6. Argawal, P.K. & Jha, B. (2010). Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Planta., 54, 201-212. DOI: 10.1007/s10535-010-0038-7.
  7. Cattivelli, L., Rizza, F., Badeck, F.W., Mazzucotelli, E. & Mastrangelo. A.M. (2008). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crop Res., 105, 1-14.
  8. Chaves, M. M., Flexas, J. & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot., 103, 551-560.
  9. Cha-um, S., Nhung, N.T.H. & Kirdmanee, C. (2010). Effects of mannitol-and salt-induced isoosmotic sress on proline accumulation, photosynthetic abilities and growth characters of rice cultivars (Oryza sativa L.spp.indica). Pak. J. Bot., 42. 927-941.
  10. Cornic, G. (2000). Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends Plant Science, 5(5), 187-188.
  11. Davatgar, N., Neishabouri, M. R., Sepaskhah, A. R. & Soltani, A. (2009). Physiological and morphological responses of rice (Oryza sativa l.) to varying water stres management strategies. International Journal of Plant Production 3(4). 19-32.
  12. Delfine, S., Loreto, F. & Alvino, A. (2001). Drought-stress effects on physiology, growth and biomass production of rainfed and irrigated bell pepper plants in the mediterranean region. J. Amer. Soc. Hort.Sci. 126; 297-304.
  13. Diaz, S., Hector, A. & Wardle, D.A. (2009). Biodiversity in forest carbon sequestration initiati-ves: not just a slide benefit. Current Opinion in Environmental Sustainability, 1, 55-60.
  14. Duan, L., Guan, C., Li, J., Eneji, A.E., Li, Z. & Zhai. Z. (2008). Compensative effects of chemical regulation with uniconazole on physiological demages caused by water deficiency during the grain filling stage of wheat. J.Agro & Crop Sci., 194, 9-14.
  15. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S.M.A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185-212.
  16. Fernandez, G.C.J. (1992). Effective selection criteria for assessing stress tolerance. In: Kuo C.G (Ed.), Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress. Publication, Tainan, Taiwan.
  17. Finkelstein, R.R., Gampala, S.S.L. & Rock, C.D. (2007). Abscisic acid signaling in seeds and seedlings. Plant Cell. 14, S15-S45.
  18. Flexas, J., Bota, J., Loreto, F., Cornic, G. & Sharkey. T.D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6, 1-11.
  19. Folkard, A., Michael, D., Abdoulaye, S. & Alain, A. (2005). Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice. Field Crops Research, 93, 223-236.
  20. Hong, W., Joel, S., Len J.W., Akira, Y. (2009). Fractal analysis on root systems of rice plants in response to drought stress. Environmental and Experimental Botany, 65, 338-344.
  21. Haman, D. Z. & Izuno, F.I. (2003). Soil plant water relationship. University of Florida. http://edis.ifas.ufl.edu/
  22. Hasthanasombut, S., Ntui, V., Supaibulwatana, K., Mii, M., Nakamura, I. (2010). Expression of indica rice OsBADHI gene under salinity stress in transgenic tobacco. Plant Biotech Rep., 4,75-83.
  23. Ha, P.T.T. (2014). Physiologycal responses of rice seedlings under drought stress. J. Sci. & Devel., 12(5), 635-640.
  24. He, H., Serraj, R., & Yang, Q. (2009). Changes in OsXTH gene expression, ABA content, and peduncle elongation in rice subjected to drought at the reproductive stage. Acta Physiol Plant., 31, 749-756.
  25. He-zheng, W., Lian-he, Z., Jun, M.A., Xu-yi, L., Yan, L., Rong-ping, Z. & Ren-quan, W. (2010). Effects of water stress on reactive oxygen species generation and protection system in rice during grain-filling stage. Agri.Sci.in China. 9, 633-641. DOI: 10.1016/S1671-2927(09)60138-3.
  26. Jacobson, M. Z. (2012). Air pollution and global warming: history, science, and solution. 2nd edition. Cambridge University Press. Pp: 45-68.
  27. Ji, K., Wang, Y., Weining, S., Qiaojun, L., Hanwei, M., Shihua, S. & Hui, C. (2012). Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during. J Plant Physiol., 169, 336-344. DOI: 10.1016/j.jplph.2011.10.010.
  28. Kaiser, W.M. (1987). Effect of water deficit on photosynthetic capacity. Physiol Plant., 71, 142-149.
  29. Kim, T.H., Bohmer, M., Hu, H. H., Nishimura, N. & Schroeder. J.I. (2010). Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling. In Annual Review of Plant Biology, Annual Reviews, Palo Alto, 61, 561-591.
  30. Kang, J., Hwang, J.U., Lee, M., Kim, Y.Y., Assmann, S.M., Martinoia, E. & Lee, Y. (2010). PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proceedings of the National Academy of Sciences of the United States of America, 107, 2355-2360.
  31. Kramer, P.J. (1944). Soil moisture in relation to plant growth. The Botanical Review, 9, 525-559.
  32. Kumar, A., Dixit, S., Ram, T., Yadaw, R.B., Mishra, K.K. & Mandal, N.P. (2014). Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. Journal of Experimental Botany, 1-14. DOI: 10.1093/jxb/eru363.
  33. Khush, G. S. (2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol., 59(1), 1–6.
  34. Lack, A.J. & Evans, D.E. (2001). Instant Notes of plant biology. BIOS Scientific Publishers Limited. Oxford.
  35. Lambers, H., Chapin, F.S., & Pons, T.L. (1998). Plant Physiological Ecology. Spinger-Verlag. New York. Pp: 299-322.
  36. Landon, J.R. (1984). Booker tropical soil manual: A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics. Longman Inc., New York.
  37. Le, A., Torre, S., Olsen, J.E. & Tanino, K.K. (2011). Stomatal responses to drought stress and air humidity. In Tech Janeza Trdine, 9, 51000 Rijeka, Croatia 12, 267-280.
  38. Lisar, S.Y.S., Motafakkerazad, R., Hossain, M.M. & Rahman, I.M.M. (2012). Water stress in plants: Causes, effects and responses. In Tech Publishing. Pp:2-12.
  39. Liang, H.L., Yu, X., Lane, D., Sun, W.N., Tang, Z.C. & Su, W.A. (2006). Uplaind rice and lowland rice exhibited different PIP expression under water deficid and ABA treatment. Cell Res., 16, 651-660.
  40. Liang, Y.C., Hu, F., Yang, M.C., Zhu, X.L., Wang, G.P., & Wang, Y.L. (1999). Mechanisms of high yield and irrigation water use efficiency of rice in plastic film mulched dryland, Sci. Agric. Sin. 32, 26-32.
  41. Liu, C.L., Chen, H.P., Liu, E., Peng, X.X., Lu, S.Y. & Guo, Z.F. (2003). Multiple tolerance of rice to abiotic stresses and its relationship with ABA accumulation. Acta Agron. Sin., 29,725-729.
  42. Lo Gullo, M., Nardini, A., Trifilo, P. & Salleo, S. (2003). Changes in leaf hydraulica and stomatal conductance following drought stress and irrigation in Ceratonia siliqua (Carob tree). Physiol Plant, 117, 186-194.
  43. Lugojan, C. & Ciulca, S. (2011). Evaluation of relative water content in winter wheat. J Hortic Fores Biotechnol., 15, 173-177.
  44. Maisura, Chozin, M.A., Lubis, I., Junaedinand, A. & Ehara, H. (2014). Some physiological character responses of rice under drought conditions in a paddy system. J Int Soc Southeast Asian Agric Sci.,20(1), 104–114.
  45. Mansfield, T. A., Hetherington, A.M. & Atkinson, C.J. (1990). Some current aspects of stomatal physiology. Annu Rev Plant Physiol Plant Mol Biol., 41, 55-75.
  46. Pallardy, S.G. (2008). Transpiration and plant water balance. In Physiology of Woody Plants. 3rd edition. Elsevier-London, UK. 25-366.
  47. Parent, B., Hachez, C., Redondo, E., Simonneau, T., Chaumont, F. & Tardieu, F. (2009). Drought and Abscisic Acid Effects on Aquaporin Content Translate into Changes in Hydraulic Conductivity and Leaf Growth Rate: A Trans-Scale Approach. Plant Physiology, 149, 2000-2012/
  48. Patel, P.K., Hemantaranjan, A., Sarma, B.K. & Singh, R. (2011). Growth and antioxidant system under drought stress in chickpea (cicer arietinum L.) as sustained by salicylic acid. J Stress Physiol & Bioch., 7, 130-144.
  49. Pandey, V. & Shukla, A. (2015). Acclimation and tolerance strategies of rice under drought stress. Rice Science, 22(4), 147-161.
  50. Phung, T.H., Jung, H.I., Park, J.H., Kim, J.G., Back, K. & Jung, S. (2011). Porphyrin biosynthesis control under water stress: sustained porphyrin status correlates with drought tolerance in transgenic rice. Plant Physiol., 157, 1746-1764.
  51. Pugnaire, L.F. & Valladers, F. (1999). Handbook of Functional Plant Ecology. Marcel Dekker, Inc. New York. Pp: 81-121.
  52. Reitze, A.W.J. (2001). Air pollution control law: Compliance and enforcement. Environmental Law Institute. Washington. Pp: 409-450.
  53. Richards, R. A, Rebetzke, G.J., Watt, M., Condon, A.G., Spielmeye, W. & Dolferus, R. (2010). Breeding for
  54. improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Functional Plant Biology, 37, 85-97.
  55. Ritchie, S.W., Nguyen, H.T. & Scott, H.A. (1990). Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci., 30, 105-111.
  56. Royer, D.L. (2001). Stomatal density and stomatal index as indicators of paleoatmospherie CO2 concentration.
  57. Review of Palaeobotany and Palynology. 114, 1-28.
  58. Saeedipour, S. (2011). Salinity tolerance of rice lines related to endogenous abscisic acid (ABA) level synthesis under stress. Afri.J Plant Sci. 5, 628-633. DOI: https://doi.org/10.5897/AJPS.9000212.
  59. Sairam, K. & Tyagi, A. (2004). Physiology and molucular biology of salinity stress tolerance in plants. Curr Sci., 86, 407-420.
  60. Sapeta, H., Costa, J.M., Lourencco, T., Maroco, J., Piet, V.D.L. & Oliveira, M.M. (2013). Drought stress response in
  61. Jatropha curcas. Growth and physiology. Environmental and Experimental Botany. 85: 76-84.
  62. Schofield, R.K. (1935). The pF of the water in soil. Trans. 3rd Int. Cong Soil Sci. 2: 38-48.
  63. Serraj, R, Kumar, A., McNally, K.L., Slamet, L.I., Bruskiewich, R., Mauleon, R., Cairns, J. & Hijmans, R. J. (2009). Improvement of drought resistance in rice. Adv Agron, 103: 41-98.
  64. Shao, H.B., Chu, L.Y., Jaleel, C.A. & Zhao, C.X. (2008). Water-deficit stress-induced anatomical changes in higer plants. Comtes Rendus Biologies. 331: 215-225.
  65. Tanaka, Y., Sano, T., Tamaoki, M., Nakajima, N., Kondo, N. & Hasezawa, S. (2005). Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 138: 2337-2343.
  66. Tezara, W., Mitchelll, V., Driscoll, S.P. & Lawlor, D.W. (2002). Effects of water deficit and its interaction with CO2 supply on the biocchemistry and physiology of photosynthesis in sunflower. J.Exp.Bot. 375: 1781-1791.
  67. Walker, J.P. & Paul, R.H. (2002). Evaluation of the Ohmmapper instrument for soil measurement. Soil Science Society of America Journal, 66, 223-234.
  68. Wang, S.X., Xia, S.T., Peng, K.Q., Kuang, F.C., Cao, Y. & Xiao, L.T. (2007). Effects of formulated fertilizer synergist on abscisic acid accumulation, proline content and photosynthetic characteristics of rice under drought. Rice Sci., 14, 42-48.
  69. Wang, J. H., Geng, L.H. & Zhang, C.M. (2012). Research on the weak signal detecting technique for crop water stress based on wavelet denoising. Adv Mat Res., 424/425, 966-970. DOI: https://doi.org/10.4028/www.scientific.net/AMR.424-425.966.
  70. Wilkinson, S., & Davies, W.J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant. Cell Environ. 33, 510-525.
  71. Yang, C., Li, A.L., Zhao, Y.L., Zhang, Z.L., Zhu, Y.F., Tan, X.M., Geng, S.F., Guo, H.Z., Zhang, X.Y., Kang, Z.S. & Mao, L. (2011). Overexpression of a wheat CCaMK gene reduces ABA sensitivity of arabidopsis thaliana during seed germination and seedling growth. Plant Mol Biol Rep., 29, 681-692.
  72. Yokota, T., Nakayama, M., Harasawa, I., Sato, M., Katsuhara, M. & Kawabe, S. (1994). Polyamines, indole-3-acetic acid and abscisic acid in rice phloem sap. Plant and Growth Regulation 15, 125-128.
  73. Zhu, X.C., Zhang, X.H., Liu, S.Q., Liu, T.D. & Zhou, X. (2012). Arbuscular mycorrhixae improves photosynthesis and water status of Zea mays L. under drought. Plant Soil Environ., 58(4), 186-191. DOI: https://doi.org/ 10.17221/23/2011-PSE
  74. Zlatev, Z. & Lidon, F.C. (2012). An overview on drought induced changes inplant growth water relations and potosynthesis. Emir. J. Food Agric., 24(1), 57-72.