Main Article Content

Abstract

[CHANGES IN SOIL CHEMICAL PROPERTIES AND MUNG BEAN (Vigna radiata L.) YIELD IN INCEPTISOLS, NORTH MORAMO AS AFFECTED BY APPLICATION OF SAGO WASTE COMPOST]. Inceptisols are one of the most widespread soil types in Southeast Sulawesi with an acreage of ​​around 2,280,567 ha (62.07%) and potential for agriculture development. The primary drawback of Inceptisols developed for cultivating mung bean includes a highly acid soil reaction with low soil pH. The polybag experiment was conducted with the objective to determine changes in the chemical properties of the soil after being amended with sago waste compost and its effects on mung bean yield. The research was conducted at the Experimental Garden of the Faculty of Agriculture, Halu Oleo University. This study used a randomized block design consisting of five levels of sago pulp compost (i.e., 0, 100, 200, 300, and 400 g/polybag) with three replications. The results showed that the application of 400 g/polybag of sago pulp compost increased soil pH and organic C by 5.02 and 2.23%, respectively. Increases were also observed in total-N (0.24%), available-P (19.85 ppm), available-K (0.24 me/100g), and CEC (11.99 me/100g). The application of 300 g/polybag of sago pulp compost resulted in the highest number of pods (11.33 pods) and the weight of 100 green bean seeds (9.39 g).


 

Article Details

How to Cite
Suleman, D., Namriah, Alam, S., & Algifari, M. (2022). PERUBAHAN SIFAT KIMIA TANAH DAN HASIL KACANG HIJAU (Vigna radiata L.) DI INCEPTISOLS MORAMO UTARA SETELAH PEMBERIAN KOMPOS LIMBAH SAGU . Jurnal Ilmu-Ilmu Pertanian Indonesia, 24(2), 95–101. https://doi.org/10.31186/jipi.24.2.95-101

References

  1. Adam, S., Magfoer, M. D. & Haryono, D. (2018). Pengaruh kompos ampas sagu dan Plant Growth Promotion Rhizobacteria (PGPR) terhadap pertumbuhan dan hasil kacang tanah (Arachis hypogea L.). Buana Sains, 18(1), 11-20. DOI: https://dx.doi.org/10.33366/bs.v18i1. 933.
  2. Akanbi, W. B., Togun, A. O., Olaniran, O. A., Akinfasoye, J. O. & Tairu, F. M. (2007). Physico-chemical properties of Eggplant (Solanum meloongena L.) fruit in response to nitrogen fertilizer and fruit size. Agriculture Journal, 2, 140–148. https://medwelljournals.com/abstract/?doi=aj.2007.140.148.
  3. Al-Bataina, B.B, Young, T.M. & Ranieri, T.M. (2016). Efects of compost age on the release of nutrients. ISWCR, 4, 230–236. DOI: https://dx. doi.org/10.1016/j.iswcr.2016.07.003.
  4. Al-Bayati, H.J.M. & Kammel, T.J. (2014). Improving growth and yield by application organic fertilizers compared with chemical fertilizers on two cucumber (Cucumis sativus L.) cultivars which grown under unheated plastic house. Mesopotamia J. Agric., 42(1), 168-176.
  5. Aminifard, M.H, Aroiee, H., Nemati, H., Azizi, M. & Khayyat, M. (2012). Effect of nitrogen fertilizer on vegetative and reproductive growth of pepper plants under field conditions. Journal of Plant Nutrition, 35(2), 235-242. DOI: https://dx.doi.org/10.1080/01904167.2012. 636126.
  6. Aytenew, M. & Bore, G. (2020). Effects of organic amendments on soil fertility and environmental quality: A Review. Journal of Plant Sciences. 8(5), 112-119. DOI: https://dx.doi.org/ 10.11648/j.jps.20200805.12.
  7. Baziramakenga, R. & R.R.S. Simard. (2001). Effect of de-inking paper sludge compost on nutrient uptake and of snap bean and potatoes grown in rotation. Compost Sci. and Util., 9, 115-126. DOI: https://doi.org/10.1080/1065657X. 2001. 10702025.
  8. Badan Pusat Statistik. (2019). Statistik Tanaman Sayuran dan Buah-buahan Semusim Indonesia. BPS, Jakarta
  9. BPT. (2009). Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. Balai Besar Litbang Sumber Daya Lahan Pertanian Balai Pengembangan dan Penelitian Pertanian Departemen Pertanian, Jakarta.
  10. Barłóg, P., W., Grzebisz, Łukowiak, R. (2018). Faba bean yield and growth dynamics in response to soil potassium availability and sulfur application. Field Crops Res., 219, 87-97. http://www.sciencedirect.com/science/.
  11. Bouajila, K. & Sanaa M. (2011). Effects of organic amendments on soil physico-chemical and biological properties. J. Mater. Environ. Sci., 2(1), 485-490.
  12. Bowles, T.M., Acosta-Martínez, V. Calderón, F. & Jackson, L.E. (2014). Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biology and Biochemistry, 68, 252–262. DOI: https://dx.doi.org/10.1016/j.soilbio.2013.10.004.
  13. Butler, T. J. & Muir, J.P. (2006). Dairy Manure Compost Improves Soil and Increases Tall Wheatgrass Yield. Agronomy Journal, 98(4), 1090. DOI: 10.2134/agronj2005.0348.
  14. Cooper, J., Greenberg, I., Ludwig, B., Hippich, L., Fischer, D., Glaser, B. & Kaiser, M. (2020). Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agriculture, Ecosystems & Environment, 295, 106882. DOI:10.1016/j.agee.2020.106882.
  15. Djuniwati, S., Pulunggono, H. B. & Suwarno. (2007). The effect of organic matter (Centrosema pubescens) and rock phosphate application on the activity of Phosphatase and P fraction of Latosol soil in Darmaga, Bogor. Jurnal Ilmu Tanah dan Lingkungan, 9(1), 10-15. DOI: https://doi.org/10.29244/jitl.9.1.10-15.
  16. Eghball, B., Wienhold, B.J., Gilley, J.E. & Eigenberg, R.A. (2002). Mineralization of manure nutrients. Journal of Soil and Water Conservation, 57(6), 470-473.
  17. Gucci, G., Lacolla, G., Summo, C., Pasqualone, A. (2019). Effect of organic and mineral fertilization on faba bean (Vicia faba L.). Sci. Hortic., 243, 338-343. DOI: https://dx.doi.org/ 10. 1016/j.scienta.2018.08.051.
  18. Habi, L.M. (2018). Pembuatan kompos granul sagu diperkaya pupuk majemuk 15: 15: 15 dan aplikasinya pada budidaya tanaman bawang merah. Jurnal Budidaya Pertanian, 14(1), 21-27. DOI: https://doi.org/10.30598/jbdp. 2018. 14. 1.21.
  19. Hikmatullah & Suryani, E. (2014). Potensi sumberdaya lahan Pulau Sulawesi mendukung peningkatan produksi padi, jagung, dan kedele. Jurnal Sumberdaya Lahan Edisi Khusus, 8(3), 41-56. DOI: https://dx.doi.org/10.21082/jsdl. v8n3.2014.%25p.
  20. Hosseinpur, A. R., Kiani, S. & Halvaei, M. (2011). Impact of municipal compost on soil phosphorus availability and mineral phosphorus fractions in some calcareous soils. Environmental Earth Sciences, 67(1), 91–96. DOI: https://dx.doi.org/10.1007/s12665-011-1482-1.
  21. Khan, K.S. & Joergensen, R.G. (2009). Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresource Technol,. 100(1), 303-309. DOI: https://dx.doi.org/10.1016/j.biortech.2008.06.002.
  22. Liu, J., Schulz, H., Brandl, S., Miehtke, H., Huwe, B. & Glaser, B. (2012). Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. Journal of Plant Nutrition and Soil Science, 175(5), 698–707. DOI: https://dx.doi.org/10.1002/jpln.201100172.
  23. Maitlo, A.A., Zhang, S., Ahmed, W., Jangid, K., Ali, S., Yang, H., Bhatti, S.M., Duan, Y. & Xu, M. (2022). Potential nitrogen mineralization and its availability in response to long-term fertilization in a Chinese Fluvo-Aquic. Soil. Agronomy. 12, 1260. DOI: https://doi.org/10.3390/ agronomy12061260.
  24. Muyassir, Sufardi, & Saputra, I. (2012). Perubahan sifat fisika Inceptisol akibat perbedaan jenis dan dosis organik. Lentera, 12(1), 1-8.
  25. Nelvia, Sutikno, A. & Haryanti, R.S. (2012). Sifat kimia tanah Inceptisol dan respon Selada terhadap aplikasi kandang dan Trichoderma. J. Teknobiologi, 3(2), 139-143. https://teknobiologi.ejournal.unri.ac.id/index.php/JTB/article/view/975/968.
  26. Sihite, E.A., Damanik, M.M.B. & Sembiring, M. (2016). Perubahan beberapa sifat kimia tanah, serapan P dan pertumbuhan tanaman jagung pada tanah Inceptisol Kwala Bekala akibat pemberian pupuk kandang ayam dan beberapa sumber P. Jurnal Agroteknologi, 4(3), 2082-2090. DOI: https://doi.org/10.32734/jaet. v4i3. 13257.
  27. Siregar, P., Fauzi & Supriadi. (2017). Pengaruh pemberian beberapa sumber bahan organik dan masa inkubasi terhadap beberapa aspek kimia kesuburan tanah Ultisol. Jurnal Online Agroekoteknologi, 5(2), 256-264. https://talenta.usu.ac.id/joa.
  28. Sulistyowati, H. (2011). Pemberian bokasi ampas sagu pada medium aluvial untuk pembibitan jarak pagar. Jurnal Perkebunan dan Lahan Tropika, 1(1), 8-12. DOI: https://dx.doi. org/ 10.26418/plt.v1i1.25.
  29. Sutriana, S. & Nur, M. (2018). Aplikasi kompos dan frekuensi pemupukan NPK dalam meningkatkan produksi Bawang Merah (Allium ascalonicum L) pada tanah gambut. Dinamika Pertanian, 34(3), 201-210. DOI: https://doi.org/10.25299/dp.2018.vol34(3).5413.
  30. Tarigan, E., Hasanah, Y. & Mariati. (2015). Respons pertumbuhan dan produksi Bawang Merah (Allium ascalonicum L.) terhadap pemberian abu vulkanik Gunung Sinabung dan arang sekam padi. J Online Agroekoteknologi. 3(3), 956–962.
  31. Tibu, C., Annang, T.Y., Solomon, N. & Yirenya‑Tawiah, D. (2019). Efect of the composting process on physicochemical properties and concentration of heavy metals in market waste with additive materials in the Ga West Municipality, Ghana. International Journal of Recycling of Organic Waste in Agriculture. 8:393–403. DOI: https://doi.org/10.1007/s40093-019-0266-6.
  32. Valarini, P.J., Curaqueo, G., Seguel, A., Manzano, K., Rubio, R., Cornejo, P. & Borie, F. (2009). Effect of compost application on some properties of a volcanic Soil From Central South Chile. Chilean Journal of Agricultural Research, 69(3), 416-425. https://oes. chileanjar. cl/system /buscador.php?cmd=busca.
  33. Zaimah, F. & Prihastanti, E. (2013). Uji penggunaan kompos limbah sagu terhadap pertumbuhan tanaman Strawberry (Fragaria vesca L) di Desa Plajan Kab. Jepara. Buletin Anatomi dan Fisiologi Sellula, 12(1), 18-28. DOI: https://doi.org/10.14710/baf.v12i1.4762.
  34. Zhang, Q. Z., Dijkstra, F. A., Liu, X. R., Wang, Y. D., Huang, J. & Lu, N. (2014). Effects of biochar on soil microbial biomass after four years of consecutive application in the north China plain. PloS One, 9(7), DOI: https://doi.org/ 10.1371/journal.pone.0102062.