Main Article Content

Abstract

Silica (Si) is a functional element in rice fields that is rarely studied, especially in Solok Regency. Intensive management without a fallow period causes silica to be transported out through high uptake by rice plants. This research aims to determine the distribution of available Si in the highland rice fields in Gunung Talang District, Solok Regency, West Sumatra. The research was carried out using a survey method. Soil samples were taken following the topo-sequence of the area of 600–1,100 meters above the sea level, which consists of 3 groups of rice fields based on height differences, namely the lower, middle, and upper fields. These rice fields have two types of straw management, namely burning and immersing. The research showed that the available Si content was 10.48–293.66 mg/kg  with an average of 133.34 mg/kg. The available Si content is higher in the upper paddy fields compared to the lower and middle paddy fields. Based on differences in straw management, the available Si content is lower in fields with straw buried compared to burned straw. The application of Si fertilizer is highly recommended to obtain the available Si content in the soil.


 

Article Details

How to Cite
Mahdiyah, A. S., Hermansah, Gusnidar, & Kamil, M. I. (2024). SPATIAL DISTRIBUTION   OF SILICON AVAILABILITY IN THE HIGHLAND PADDY FIELDS OF WEST SUMATERA, INDONESIA . Jurnal Ilmu-Ilmu Pertanian Indonesia, 26(1), 33–39. https://doi.org/10.31186/jipi.26.1.33-39

References

  1. Darmawan, Kyuma, K., Saleh, A., Subagjo, H., Masunaga, T. & Wakatsuki, T. (2006). Effect of long-term intensive rice cultivation on the available silica content of sawah soils: Java Island, Indonesia. Soil Science and Plant Nutrition, 52(6), 745–753. DOI: https://doi.org/10.1111/j.1747-0765.2006.00089.x .
  2. DataIndonesia.id. (2023). Konsumsi Beras di Indonesia Meningkat pada 2022. https://dataindonesia.id/agribisnis-kehutanan/detail/konsumsi-beras-di-indonesia-meningkat-pada-2022.
  3. Dobermann, A. & Fairhurst, T. (2000). Rice: Nutrient Disorders & Nutrient Management. In Medical Instrumentation. Potash & Phosphate Institute (PPI).
  4. Epstein, E. (1999). Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 641–664.
  5. Hughes, H. J., Hung, D. T. & Sauer, D. (2020). Silicon recycling through rice residue management does not prevent silicon depletion in paddy rice cultivation. Nutrient Cycling in Agroecosystems, 118(1), 75–89. DOI: https://doi.org/10.1007/s10705-020-10084-8.
  6. Husnain, H., Rochayati, S. & Adamy, I. (2012). Pengelolaan Hara Silika pada Tanah Pertanian di Indonesia. Prosiding Seminar Nasional Teknologi Pemupukan dan Pemulihan Lahan Terdegradasi, 12, 237–246. https://balittanah. litbang.pertanian.go.id/ind/index.php/publikasi-mainmenu-78/art/661-silika153.
  7. Jamulya & Haryono, E. (2000). Kajian tingkat pelapukan batuan menurut toposekuen di Daerah Aliran Sungai Tangsi Kabupaten Magelang. Majalah Geografi Indonesia, 14(1), 13–24.
  8. Kitta, Y. & Mizouchi, T. (1997). Simplification and refinement of the acetate extraction method for estimation of Si availability. Japan Journal Soil Science Plant Nutrition, 68, 589–594.
  9. Klotzbücher, T., Marxen, A., Jahn, R. & Vetterlein, D. (2016). Silicon cycle in rice paddy fields: insights provided by relations between silicon forms in topsoils and plant silicon uptake. Nutrient Cycling in Agroecosystems, 105(2), 157–168. DOI: https://doi.org/10.1007/s10705-016-9782-1.
  10. Liu, Q., Zhou, X. & Sun, Z. (2017). Application of silicon fertilizer affects nutritional quality of rice. Chilean Journal of Agricultural Research, 77(2), 163–170. DOI: https://doi.org/10.4067/S0718-58392017000200163.
  11. Liu, X., Li, L., Bian, R., Chen, D., Qu, J., Wanjiru Kibue, G., Pan, G., Zhang, X., Zheng, J. & Zheng, J. (2014). Effect of biochar amendment on soil-silicon availability and rice uptake. Journal of Plant Nutrition and Soil Science, 177(1), 91–96. DOI: https://doi.org/ 10.1002/jpln.201200582.
  12. Makarim, A. K., Suhartatik, E. & Kartohardjono, A. (2007). Silikon: hara penting pada tanaman padi. Iptek Tanaman Pangan, 195–204.
  13. Nandiyanto, A. B. D., Rahman, T., Fadhlulloh, M. A., Abdullah, A. G., Hamidah, I. & Mulyanti, B. (2016). Synthesis of silica particles from rice straw waste using a simple extraction method. IOP Conference Series: Materials Science and Engineering, 128(1). DOI: https://doi.org/10.1088/1757-899X/128/1/ 012040.
  14. Park, W. P., Song, K. C., Koo, B. J. & Hyun, H. N. (2019). Distribution of available silicon of volcanic ash soils in Jeju Island. Applied and Environmental Soil Science. DOI: https://doi.org/10.1155/2019/2729694.
  15. Qurrohman, B. F. T., Suriadikusumah, A., Joy, B. & Sudirja, R. (2023). Spatial distribution of status silicon availability for plant and its effect to rice yield. Sains Tanah, 20(1), 10–18. DOI: https://doi.org/10.20961/stjssa.v20i1.65862.
  16. Siregar, A. F., Sipahutar, I. A., Husnain & Masunaga, T. (2020). Beneficial effect of silicon application and intermittent irrigation on improving tice productivity in Indonesia. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 48(1), 15–21. DOI: https://doi.org/10.24831/jai.v48i1.29378.
  17. Song, Z., Wang, H., Strong, P. J. & Shan, S. (2013). Increase of available soil silicon by Si-rich manure for sustainable rice production. Agronomy for Sustainable Development, 34(4), 813–819. DOI: https://doi.org/10.1007/s13593-013-0202-5.
  18. Suhardiman, D., Giordano, M., Leebouapao, L. & Keovilignavong, O. (2015). Farmers’ strategies as building block for rethinking sustainable intensification. Agriculture and Human Values, 33(3), 563–574. DOI: https://doi.org/ 10.1007/s10460-015-9638-3.
  19. Sumida, H. (1992). Silicon supplying capacity of paddy soils and characteristics of silicon uptake by rice (Oryza sativa) plants in cool regions in Japan. Bulletin of the Tohoku National Agricultural Experiment Station.
  20. Ulhaq, M. D., & Wahid, A. (2022). System dynamics modeling for demographic bonus projection in Indonesia. IOP Conference Series: Earth and Environmental Science, 1039(1). DOI: https://doi.org/10.1088/1755-1315/ 1039/ 1/012031.
  21. Yanai, J., Taniguchi, H. & Nakao, A. (2016). Evaluation of available silicon content and its determining factors of agricultural soils in Japan. Soil Science and Plant Nutrition, 62(5–6), 511–518. DOI: https://doi.org/10.1080/ 00380768. 2016.1232601.
  22. Yongchao, L., Miroslav, N., Richard, B., Gong, H. & Alin, S. (2015). Silicon Biogeochemistry and Bioavailability in Soil. In Silicon in Agriculture (p. 54). Springer Dordrecht. DOI: https://doi.org/10.1007/978-94-017-9978-2.