Main Article Content
Abstract
[POTENTIAL OF BIOFERTILIZERS TO INCREASE RICE YIELD IN SWAMP LANDS] Nutrient unavailability is a major problem in swamp land due to flooded and acidic conditions. The use of biofertilizer, which can increase the availability of nutrients, is a solution to increase rice yields in swamp land. This research aimed to find out the improvement of the rice yield with an application of bacteria in biofertilizers in swampy land. One factor tested was the various doses of bacterial biofertilizer consisting of 1, 2, 3, and 4 g/50 g of paddy seeds, without bacteria as a control, arranged in a randomized block design with 3 replications. Rice seeds were soaked for 24 hours, then drained, and biofertilizer was applied as a seed treatment following the treatment doses. Seeding was carried out in trays measuring 15 cm high for 2 weeks. The inorganic fertilizer was applied at 75% of the recommended dose. The variables observed were plant height, number of tillers, number of productive tillers, percentage of empty grain, weight of 1000 seeds, and grain weight. The data observed were analyzed with an ANOVA at the 5% level and further tested with DMRT at the 5% level. The results showed that the bacteria in biological fertilizer can potentially increase the yield of swamp rice plants. A biofertilizer dosage of 4 g/50 g of seeds gave the highest yield in terms of grain weight per hill and per plot, as well as a weight of 1000 grains with an increase of yield of 14.32% compared to control.
Article Details
Copyright (c) 2024 Jurnal Ilmu-Ilmu Pertanian Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- Alam, S. M., Cui, Z. J., Yamagishi, T. & Ishii, R. (2001). Grain yield and related physiological characteristics of rice plants (Oryza sativa L.) Inoculated with free-living rhizobacteria. Plant Production Science, 4(2), 126–130. DOI: https://doi.org/10.1626/pps.4.126.
- Ambreetha, S., Chinnadurai, C., Marimuthu, P. & Balachandar, D. (2018). Plant-associated Bacillus modulates the expression of auxin-responsive genes of rice and modifies the root architecture. Rhizosphere, 57–66. DOI: https://doi.org/10.1016/j.rhisph.2017.12.001.
- Badan Pusat Statistik. (2023). Luas Panen dan Produksi Padi di Indonesia 2023 (Angka Sementara). Badan Pusat Statistik, 2023(68), 1–8.
- BPS, P. B. (2023). Provinsi Bengkulu Dalam Angka Tahun 2023. BPS, 1–29.
- Banayo, N. P. M., Cruz, P. C. S., Aguilar, E. A., Badayos, R. B. & Haefele, S. M. (2012). Evaluation of biofertilizers in irrigated rice: Effects on grain yield at different fertilizer rates. Agriculture (Switzerland), 2(1), 73–86. DOI: https://doi.org/10.3390/agriculture2010073.
- Bishnoi, U. (2015). PGPR Interaction: An Ecofriendly Approach Promoting the Sustainable Agriculture System. In Advances in Botanical Research, (75). Elsevier Ltd. DOI: https://doi.org/10.1016/bs.abr.2015.09.006.
- Doni, F., Suhaimi, N. S. M., Mispan, M. S., Fathurrahman, F., Marzuki, B. M., Kusmoro, J. & Uphoff, N. (2022). Microbial contributions for rice production: from conventional crop management to the use of ‘Omics’ Technologies. International Journal of Molecular Sciences, 23(2).DOI: https://doi.org/10.3390/ijms23020737.
- Fitri, S. N. A. & Gofar, N. (2010). Increasing of rice yield by using growth promoting Endophytic Bacteria from swamp land. Jurnal TANAH TROPIKA (Journal of Tropical Soils), 15(3), 271–276. DOI: https://doi.org/10.5400/jts. 2010.15.3.271.
- Husna, M., Sugiyanta & Pratiwi, E. (2019). Kemampuan konsorsium Bacillus pada pupuk hayati dalam memfiksasi N2, melarutkan fosfat dan mensintesis fitohormon Indole 3-Acetic-Acid the ability of Bacillus consortium to fix N2, solubilize phosphate and synthesize Indole-3-Acetic Acid fitohormone. Jurnal Tanah dan Iklim, 43(2), 117–125.
- Jinal, H. N., Amaresan, N. & Sankaranarayanan, A. (2020). Methylobacterium. Beneficial Microbes in Agro-Ecology: Bacteria and Fungi, 1976, 509–519. DOI: https://doi.org/10.1016/B978-0-12-823414-3.00024-1.
- Kader, M. A., Mian, M. H. & Hoque, M. S. (2002). Effects of Azotobacter inoculant on the yield and nitrogen uptake by Wheat. Journal of Biological Sciences, 2(4), 259–261. DOI: https://doi.org/10.3923/jbs.2002.259.261.
- Koesrini, Saleh, M. & Hidayat, A. R. (2020). Peningkatan produktivitas padi melalui ameliorasi dan pemberian pupuk hayati di lahan rawa pasang surut tipe B. Jurnal Pertanian Agros, 22(2), 186–194.
- Kumar, S., Diksha, Sindhu, S. S. & Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 3, 100094. DOI: https://doi.org/10. 1016/j.crmicr.2021.100094.
- O’Callaghan, M. (2016). Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology, 100(13), 5729–5746. DOI: https://doi.org/10.1007/s00253-016-7590-9.
- Rodrigues, M. Â., Ladeira, L. C. & Arrobas, M. (2018). Azotobacter-enriched organic manures to increase nitrogen fixation and crop productivity. European Journal of Agronomy, 93, 88–94. DOI: https://doi.org/10.1016/j.eja. 2018.01.002.
- Romdon, A. S., Kurniyati, E., Bahri, S. & Pramono, J. (2014). Kumpulan Deskripsi Varietas Padi. Angewandte Chemie International Edition, 6(11), 951–952., 2013–2015.
- Saraswati, R. (2014). Inovasi Teknologi Pupuk Hayati Mendukung Pembangunan Pertanian Bioindustri.
- Simanungkalit, RDM, Suriadikarta, DA, Saraswati, R., Setyorini, D. & Hartatik, W. (2006). (2019). Pupuk 2: Pupuk Organik dan Pupuk Hayati. Litbang Pertanian, 245.
- Sudana, W. (2005). Potensi dan prospek lahan rawa. Analisis Kebijakan Pertanian, 3(2), 141–151.
- Sulakhudin & Hatta, M. (2020). Biofertilizer application of paddy field on tidal swampy areas in West Kalimantan. IOP Conference Series: Earth and Environmental Science, 499(1). DOI: https://doi.org/10.1088/1755-1315/499/ 1/012022.
- Suriadikarta, D. A. (2012). Teknologi pengelolaan lahan rawa berkelanjutan : Studi Kasus Kawasan EX PLG Kalimantan Tengah. Sumberdaya Lahan, 6(1), 45–54.
- Watanabe, I., & Roger, P. A. (1984). Nitrogen fixation in wetland rice field. Current Development in Biological Nitrogen Fixation, 237–276.
- Zhao, G., Zhu, X., Zheng, G., Meng, G., Dong, Z., Baek, J. H., Jeon, C. O., Yao, Y., Xuan, Y. H., Zhang, J. & Jia, B. (2024). Development of biofertilizers for sustainable agriculture over four decades (1980–2022). Geography and Sustainability, 5(1), 19–28. DOI: https://doi.org/10.1016/j.geosus.2023.09.006.
References
Alam, S. M., Cui, Z. J., Yamagishi, T. & Ishii, R. (2001). Grain yield and related physiological characteristics of rice plants (Oryza sativa L.) Inoculated with free-living rhizobacteria. Plant Production Science, 4(2), 126–130. DOI: https://doi.org/10.1626/pps.4.126.
Ambreetha, S., Chinnadurai, C., Marimuthu, P. & Balachandar, D. (2018). Plant-associated Bacillus modulates the expression of auxin-responsive genes of rice and modifies the root architecture. Rhizosphere, 57–66. DOI: https://doi.org/10.1016/j.rhisph.2017.12.001.
Badan Pusat Statistik. (2023). Luas Panen dan Produksi Padi di Indonesia 2023 (Angka Sementara). Badan Pusat Statistik, 2023(68), 1–8.
BPS, P. B. (2023). Provinsi Bengkulu Dalam Angka Tahun 2023. BPS, 1–29.
Banayo, N. P. M., Cruz, P. C. S., Aguilar, E. A., Badayos, R. B. & Haefele, S. M. (2012). Evaluation of biofertilizers in irrigated rice: Effects on grain yield at different fertilizer rates. Agriculture (Switzerland), 2(1), 73–86. DOI: https://doi.org/10.3390/agriculture2010073.
Bishnoi, U. (2015). PGPR Interaction: An Ecofriendly Approach Promoting the Sustainable Agriculture System. In Advances in Botanical Research, (75). Elsevier Ltd. DOI: https://doi.org/10.1016/bs.abr.2015.09.006.
Doni, F., Suhaimi, N. S. M., Mispan, M. S., Fathurrahman, F., Marzuki, B. M., Kusmoro, J. & Uphoff, N. (2022). Microbial contributions for rice production: from conventional crop management to the use of ‘Omics’ Technologies. International Journal of Molecular Sciences, 23(2).DOI: https://doi.org/10.3390/ijms23020737.
Fitri, S. N. A. & Gofar, N. (2010). Increasing of rice yield by using growth promoting Endophytic Bacteria from swamp land. Jurnal TANAH TROPIKA (Journal of Tropical Soils), 15(3), 271–276. DOI: https://doi.org/10.5400/jts. 2010.15.3.271.
Husna, M., Sugiyanta & Pratiwi, E. (2019). Kemampuan konsorsium Bacillus pada pupuk hayati dalam memfiksasi N2, melarutkan fosfat dan mensintesis fitohormon Indole 3-Acetic-Acid the ability of Bacillus consortium to fix N2, solubilize phosphate and synthesize Indole-3-Acetic Acid fitohormone. Jurnal Tanah dan Iklim, 43(2), 117–125.
Jinal, H. N., Amaresan, N. & Sankaranarayanan, A. (2020). Methylobacterium. Beneficial Microbes in Agro-Ecology: Bacteria and Fungi, 1976, 509–519. DOI: https://doi.org/10.1016/B978-0-12-823414-3.00024-1.
Kader, M. A., Mian, M. H. & Hoque, M. S. (2002). Effects of Azotobacter inoculant on the yield and nitrogen uptake by Wheat. Journal of Biological Sciences, 2(4), 259–261. DOI: https://doi.org/10.3923/jbs.2002.259.261.
Koesrini, Saleh, M. & Hidayat, A. R. (2020). Peningkatan produktivitas padi melalui ameliorasi dan pemberian pupuk hayati di lahan rawa pasang surut tipe B. Jurnal Pertanian Agros, 22(2), 186–194.
Kumar, S., Diksha, Sindhu, S. S. & Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 3, 100094. DOI: https://doi.org/10. 1016/j.crmicr.2021.100094.
O’Callaghan, M. (2016). Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology, 100(13), 5729–5746. DOI: https://doi.org/10.1007/s00253-016-7590-9.
Rodrigues, M. Â., Ladeira, L. C. & Arrobas, M. (2018). Azotobacter-enriched organic manures to increase nitrogen fixation and crop productivity. European Journal of Agronomy, 93, 88–94. DOI: https://doi.org/10.1016/j.eja. 2018.01.002.
Romdon, A. S., Kurniyati, E., Bahri, S. & Pramono, J. (2014). Kumpulan Deskripsi Varietas Padi. Angewandte Chemie International Edition, 6(11), 951–952., 2013–2015.
Saraswati, R. (2014). Inovasi Teknologi Pupuk Hayati Mendukung Pembangunan Pertanian Bioindustri.
Simanungkalit, RDM, Suriadikarta, DA, Saraswati, R., Setyorini, D. & Hartatik, W. (2006). (2019). Pupuk 2: Pupuk Organik dan Pupuk Hayati. Litbang Pertanian, 245.
Sudana, W. (2005). Potensi dan prospek lahan rawa. Analisis Kebijakan Pertanian, 3(2), 141–151.
Sulakhudin & Hatta, M. (2020). Biofertilizer application of paddy field on tidal swampy areas in West Kalimantan. IOP Conference Series: Earth and Environmental Science, 499(1). DOI: https://doi.org/10.1088/1755-1315/499/ 1/012022.
Suriadikarta, D. A. (2012). Teknologi pengelolaan lahan rawa berkelanjutan : Studi Kasus Kawasan EX PLG Kalimantan Tengah. Sumberdaya Lahan, 6(1), 45–54.
Watanabe, I., & Roger, P. A. (1984). Nitrogen fixation in wetland rice field. Current Development in Biological Nitrogen Fixation, 237–276.
Zhao, G., Zhu, X., Zheng, G., Meng, G., Dong, Z., Baek, J. H., Jeon, C. O., Yao, Y., Xuan, Y. H., Zhang, J. & Jia, B. (2024). Development of biofertilizers for sustainable agriculture over four decades (1980–2022). Geography and Sustainability, 5(1), 19–28. DOI: https://doi.org/10.1016/j.geosus.2023.09.006.