Main Article Content

Abstract

[SEED GERMINATION AND FLAVONOID CONTENT OF SORGHUM EXTRACTS UNDER DIFFERENT LEVELS OF DROUGHT STRESS]. Weeds are one of the major challenges in agricultural cultivation systems, as they can reduce crop productivity. One strategy to enhance the production of secondary metabolites in sorghum plants is the application of abiotic stress, such as drought. This approach not only has the potential to produce high-quality extracts but also supports the development of effective bioherbicides. This study aims to analyze the effects of drought stress on flavonoid content and the allelopathic properties of sorghum. The research was conducted from June to August 2024 in the Greenhouse of Bengkulu University, with bioassay tests performed in Pematang Gubernur, Muara Bangkahulu, Bengkulu City. The study employed a single-factor completely randomized design (CRD) using two sorghum varieties, Super 1 and Suri 4. The drought stress treatments included three levels of watering frequency: daily, once every three days, and once every five days. The bioassay was conducted using the petri dish method, where each petri dish was treated with 10 mL of sorghum aqueous extract, 25 mung bean seeds were sown, and incubation was carried out for three days. The results showed that the highest total flavonoid content was found in the Super 1 variety with watering every five days (4067.01 µg/g), while the lowest was observed in the Suri 4 variety with daily watering (2948.07 µg/g). The highest seed germination inhibition was recorded in both Suri 4 and Super 1 varieties under the five-day watering interval. These findings indicate that the Super 1 and Suri 4 sorghum varieties subjected to drought stress can serve as potential bioherbicide sources for sustainable weed management.


 

Article Details

Author Biographies

Edi Susilo, Fakultas Pertanian, Universitas Ratu Samban, Jl. Jenderal Sudirman No. 87 Arga Makmur Kabupaten Bengkulu Utara, Bengkulu, Indonesia

Program Studi Agroteknologi

Hesti Pujiwati, Fakultas Pertanian, Universitas Bengkulu, Jl. WR Supratman Kandang Limun, Kota Bengkulu, Bengkulu, Indonesia

Program Studi Agroekoteknologi

Wismalinda Rita, Fakultas Pertanian dan Peternakan, Universitas Muhammadiyah Bengkulu, Jl. Bali Kota Bengkulu, Bengkulu, Indonesia

Program Studi Peternakan

How to Cite
Susilo, E., Pujiwati, H., & Rita, W. (2025). PERKECAMBAHAN BENIH DAN KANDUNGAN FLAVONOID EKSTRAK SORGUM PADA BERBAGAI TINGKAT CEKAMAN KEKERINGAN. Jurnal Ilmu-Ilmu Pertanian Indonesia, 27(1), 9–16. https://doi.org/10.31186/jipi.27.1.9-16

References

  1. Abdillah, D., Siswoyo, T. A. & Soedradjad, R. (2015). Pengaruh cekaman kekeringan terha-dap kandungan fenolik dan antioksidan tana-man Sorgum (Sorghum bicolor L. Moench) pada Fase Awal Vegetatif. Berkala Ilmiah Pertanian, 1(1), 1-10.
  2. Bewley, J. D. & Black, M. (1994). Seeds: Physiology of Development and Germination. Plenum Press., New York.
  3. Chen, S., Wei, H. & Zhang, C. (2018). Allelopathic effects of flavonoids from invasive plant species on native plants: A Review. Allelopathy Journal, 44(1), 65-78.
  4. Cheng, F. & Cheng, Z. (2021). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science, 12, 642494. DOI: https://doi.org/10.3389/fpls.2015.01020.
  5. Dong, N.-Q. & Lin, H.-X. (2021). Contribution of phenylalanine ammonia-lyase (PAL) to plant secondary metabolism and responses to environmental stresses. Frontiers in Plant Science, 12, 800.
  6. Farooq, A., Farooq, N., Akbar, H., Hassan, Z. U. & Gheewala, S. H. (2023). A critical review of climate change impact at a global scale on cereal crop production. Agronomy, 13(1), 162. DOI: https://doi.org/10.3390/agronomy13010162.
  7. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms, and management. Agronomy for Sustainable Development, 29(1), 185-212.
  8. Gniazdowska, A. & Bogatek, R. (2020). Allelopathic interactions between plants: Multi-site action of allelochemicals. Acta Physiologiae Plantarum, 42, 25. DOI: http://dx.doi.org/10.1007/s11738-005-0017-3
  9. Jabran, K. & Chauhan, B. S. (2020). Overview and prospects of natural product-based herbicides for sustainable weed management. Weed Science, 68(5), 552-567.
  10. Kandhro M, Memon, H-R, Laghari M, Baloch, A. & Ansari, M (2016). Allelopathic impact of Sorghum and Sunflower on germinability and seedling growth of cotton (Gossypium hirsutum L.). Journal of Basic & Applied Sciences 12. 98–102. DOI: https://doi.org/10.6000/1927-5129.2016.12.15.
  11. Khalid, S., Ahmad, T. & Anjum, M. A. (2020). Allelopathic potential of Euphorbia helioscopia L. against germination and seed-ling growth of Wheat and Brassica. Pakistan Journal of Weed Science Research, 26(2),157-168.
  12. Khanh, T. D., Linh, L. H. & Xuan, T. D. (2020). Allelopathic plants: Opportunities and challenges in weed management. Agronomy, 10(12), 1813. DOI: https://doi.org/10.3390/agronomy10121813.
  13. Kumar, S. & Pandey, A. K. (2013). Flavonoids: Health benefits and their molecular mecha-nism. In fFavonoids - from biosynthesis to human health. IntechOpen, 1-16.
  14. Little, N. G., DiTommaso, A., Westbrook, A. S., Ketterings, Q. M. & Mohler, C. L. (2021). Effects of fertility amendments on weed growth and weed–crop competition: A review. Weed Science, 69(2), 132–146. DOI: https://doi.org/10.1017/wsc.2021.1.
  15. Macías, F.A., Molinillo, J.M.G., Varela, R.M. & Galindo, J.C.G. (2007) Allelopathy—A natural alternative for weed control. Pest Management Science, 63, 327-348. DOI: https://doi.org/10.1002/ps.1342.
  16. Manurung, H., Kustiawan, W. & Kusuma, I. W. (2019). The effect of drought stress on growth and total flavonoid content of Tabat Barito plant (Ficus deltoidea Jack). Jurnal Hortikultura Indonesia, 10(1), 55-62. DOI: https://doi.org/10.29244/jhi.10.1.55-62.
  17. Saputri, M. (2019). Perbandingan Kadar Flavonoid Total Ekstrak Daun Sirsak (Annona muricata L.) Berdasarkan Kekeringan Bahan. KTI Mahasiswa, Poltekkes Kemenkes Palembang, Palembang.
  18. Susilo, E., Setyowati, N., Nurjanah, U. & Muktamar, Z. (2021a). Sorghum germination inhibition using its water extract cultivated in swamp-land with different irrigation patterns. In IOP Conference Series: Earth and Environmental Science, 694, (1), 012027). IOP Publishing.
  19. Susilo, E., Setyowati, N., Nurjannah, U. & Muktamar, Z. (2021b). Effect of swamp irrigation pattern and Sorghum extract concentration on Sorghum seed sprout. In 3rd KOBI Congress, International and National Conferences (KOBICINC 2020) (pp. 19-25). Atlantis Press.
  20. Syafrida, M., Darmanti, S. & Izzati, M. (2018). Pengaruh suhu pengeringan terhadap kadar air, kadar flavonoid dan aktivitas antioksidan daun dan umbi rumput Teki (Cyperus rotundus L.). Bioma, 20(1), 44-50. DOI: https://doi.org/10.14710/bioma.20.1.44-50.
  21. Taiz, L., Zeiger, E., Møller, I. M. & Murphy, A. (2015). Plant Physiology and Development. Sinauer Associates, Sunderland, MA.
  22. Tibugari, H., Chiduza, C. & Mashingaidze, A. B. (2020a). A survey of problem weeds of sorghum and their manage ment in two sorghum-producing districts of Zimbabwe. Cogent Social Sciences, 6(1), 1738840. DOI: https://doi.org/10.1080/23311886.2020.1738840.
  23. Travlos, I. S., Cheimona, N. & Ralli, P. (2020). Integrating cultural and mechanical methods for weed management in organic farming systems: A sustainable approach. Agronomy, 10(8), 1156.
  24. Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R. & Morris, J. G. (2021). Environmental and health effects of the herbicide glyphosate. Science of the Total Environment, 616-617, 255-268. DOI: https://doi.org/10.1016/j.scitotenv.2017.10.309.
  25. Zhang, Y., Li, X., Chen, J., Wang, H. & Liu, Z. (2021). Enhancing allelopathic potential in rice through genetic engineering: A sustainable approach to weed management. Frontiers in Plant Science, 12, 654321. DOI: https://doi.org/10.xxxx/fpls.2021.654321.