Main Article Content
Abstract
[EFFECTS OF WATERLOGGING ON THE GROWTH OF TARO (Colocasia esculenta (L.) Schott) ACCESSIONS IN COASTAL AREA OF BENGKULU]. Taro (Colocasia esculenta (L.) Schott) is a vital tropical root crop with considerable potential for food diversification due to its nutritional and carbohydrate content. In Bengkulu Province, Indonesia—a region with rich taro genetic diversity in coastal agroecosystems—systematic evaluation of local accessions under waterlogging stress remains limited. This study assessed the effects of waterlogging depth and accession variability on taro growth using a Randomized Complete Block Design with three replications, evaluating ten local accessions under three waterlogging levels: 0 cm (control), 15 cm, and 30 cm. Results revealed significant (p < 0.01) differences among accessions for plant height, leaf width, leaf length, and stem diameter, indicating substantial genetic variation. Waterlogging significantly affected leaf width and length (p < 0.01) and plant height (p < 0.05), but not leaf number or stem diameter. No significant accession × waterlogging interaction was observed, suggesting consistent accession performance across treatments. Karang Tinggi (AK10) showed the greatest plant height (134.69 cm) and stem diameter (6.39 cm), while Bentiring 2 (AK4) exhibited the largest leaves. Moderate waterlogging (15 cm) did not impair growth relative to the control, but 30 cm waterlogging reduced leaf dimensions. These findings support the selection of resilient accessions like Karang Tinggi and Bentiring 2 for cultivation in flood-prone coastal areas and provide a foundation for breeding waterlogging-tolerant taro varieties.
Article Details
Copyright (c) 2025 Jurnal Ilmu-Ilmu Pertanian Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- Aditika, Kapoor, B., Singh, S. & P. Kumar. (2022). Taro (Colocasia esculenta): Zero wastage orphan food crop for food and nutritional security. South African Journal of Botany, 145 (1), 157–169. DOI:https://doi.org/10.1016/j.sajb.2021.08.014.
- Andarini, Y. N. & A. Risliawati. (2018). Variabilitas karakter morfologi plasma nutfah talas (Colocasia esculenta) lokal Pulau Jawa. Buletin Plasma Nutfah, 24(1), 63–76.
- Cahyanti, L.D., Sopandie, D., Santosa, E. & Purnamawati, H. (2022). Variability response of growth of 17 taro genotype under drought and flooding. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 50(2), 164-171. DOI:https://doi.org/10.24831/jai. v50i2.41814.
- Hidayatullah, C.S.R., Santosa, E. & Didy, S. (2020). Respon genotipe talas Colocasia esculenta var esculenta dan var antiquorum pada interval pemberian air berbeda. Indonesian Journal of Agronomy, 48(3), 249-257. DOI:https://doi.org/10.24831/jai.v48i3.33136.
- Lebot, V., Prana, M.S., Kreike, N. & van Heck, H. (2004). Characterisation of taro (Colocasia esculenta (L.) Schott) genetic resources in Southeast Asia and Oceania. Genetic Resources and Crop Evolution, 51(4), 381-392. DOI:https://doi.org/10.1023/B:GRES.0000023453.30948.4d .
- Maretta, D., Sobir, Helianti, I., Purwono & Santosa, E. (2020). Genetic diversity in Eddoe Taro (Colocasia esculenta var. antiquorum) from Indonesia based on morphological and nutritional characteristics. BIODIVERSITAS, 21(8), 3525-3533. DOI:https://doi.org/10.13057/biodiv/d210814.
- Maxted, N., & Kell, S. P. (2009). Establishment of a global network for the in situ conservation of crop wild relatives: Status and needs. FAO Commission on Genetic Resources for Food and Agriculture, Background Study Paper No. 41. Food and Agriculture Organization of the United Nations. http://www.fao.org/3/i1500e/i1500e.pdf.
- Miyasaka, S., Bellinger, M.R., Kantar, M.B. & Helmkampf, M. (2019). Genetic diversity in taro (Colocasia esculenta). Genetic Diversity in Horticultural Plants, pp. 191-215. DOI:https://doi.org/10.1007/978-3-319-96454-6_7.
- Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651–681. DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911.
- Njuguna, J.W., Karuma, A.N., Gicheru, P. & Onwonga, R.(2023). Effects of watering regimes and planting density on Taro (Colocasia esculenta) growth, yield, and yield components in Embu, Kenya. International Journal of Agronomy. 29, 1-9. DOI:https://doi.org/10.1155/2023/6843217.
- Onwueme, I. C. (1999). Tropical root and tuber crops: Production, perspectives and future prospects. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/3/x2588e/x2588e00.htm.
- Pitoyo, A.R.I., A.A. Prameta., Marsusi, Suratman, & Suranto. (2018). Morphological, anatomical and isozyme variability among taro (Colocasia esculenta) accessions from south-eastern part of Central Java, Indonesia. Biodiversitas, 19 (5), 1811–1819. DOI:https://doi.org/10.13057/biodiv/d190531.
- Santosa, E. (2020). Respon genotipe talas Colocasia esculenta var esculenta dan var antiquorum pada interval pemberian air berbeda. Indonesian Journal of Agronomy. DOI:https://doi.org/10.24831/JAI.V48I3.33136.
- Sayer, J., Sunderland, T., Ghazoul, J., Pfund, J. L., Sheil, D., Meijaard, E., … & Kapos, V. (2013). Ten principles for a landscape approach to reconciling agriculture, conserva tion, and other competing land uses. Proceedings of the National Academy of Sciences, 110(21), 8349–8356. DOI: https://doi.org/10.1073/pnas.1210595110.
- Setter, T. L. & Waters, I. (2003). Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant and Soil, 253(1), 1–34. DOI:https://doi.org/10.1023/A:1024573305997.
- Simamora, R. M., Y. Yulian, Y. & Turmudi, E. (2018). Penampilan 10 jenis talas (Colocasio esculenta (L). Schott) di lahan pesisir Bengkulu. Jurnal Ilmu-Ilmu Pertanian Indonesia, 20(1), 19–25.
- Tester, M. & Davenport, R. (2003). Na⁺ tolerance and Na⁺ transport in higher plants. Annals of Botany, 91(5), 503–527. DOI:https://doi.org/10.1093/aob/mcg058.
- Trimanto, T. & Sugiyarto. (2010). Characterisation of taro (Colocasia esculenta) based on morphological and isozymic patterns markers. Nusantara Bioscience. 2(1), 7-14. DOI:https://doi.org/10.13057/nusbiosci/n030102.
- Yulian, Y., Turmudi, E., Hindarto, K.S., Bustamam, H. & J.N. Hutajulu. (2016). Pertumbuhan vegetatif talas Satoimo & kultivar lokal pada dosis pupuk nitrogen yang berbeda. Akta Agrosia, 16(2): 167–172. DOI:https://doi.org/10.31186/aa.19.2.167-172.
- Zhang, H., Mittal, N., Leamy, L. J., Barazani, O. & Song, B. H. (2017). Back into the wild— Apply untapped genetic diversity of wild relatives for crop improvement. Evolutionary Applications, 10(9), 902–915. DOI:https://doi.org/10.1111/eva.12434 .
References
Aditika, Kapoor, B., Singh, S. & P. Kumar. (2022). Taro (Colocasia esculenta): Zero wastage orphan food crop for food and nutritional security. South African Journal of Botany, 145 (1), 157–169. DOI:https://doi.org/10.1016/j.sajb.2021.08.014.
Andarini, Y. N. & A. Risliawati. (2018). Variabilitas karakter morfologi plasma nutfah talas (Colocasia esculenta) lokal Pulau Jawa. Buletin Plasma Nutfah, 24(1), 63–76.
Cahyanti, L.D., Sopandie, D., Santosa, E. & Purnamawati, H. (2022). Variability response of growth of 17 taro genotype under drought and flooding. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 50(2), 164-171. DOI:https://doi.org/10.24831/jai. v50i2.41814.
Hidayatullah, C.S.R., Santosa, E. & Didy, S. (2020). Respon genotipe talas Colocasia esculenta var esculenta dan var antiquorum pada interval pemberian air berbeda. Indonesian Journal of Agronomy, 48(3), 249-257. DOI:https://doi.org/10.24831/jai.v48i3.33136.
Lebot, V., Prana, M.S., Kreike, N. & van Heck, H. (2004). Characterisation of taro (Colocasia esculenta (L.) Schott) genetic resources in Southeast Asia and Oceania. Genetic Resources and Crop Evolution, 51(4), 381-392. DOI:https://doi.org/10.1023/B:GRES.0000023453.30948.4d .
Maretta, D., Sobir, Helianti, I., Purwono & Santosa, E. (2020). Genetic diversity in Eddoe Taro (Colocasia esculenta var. antiquorum) from Indonesia based on morphological and nutritional characteristics. BIODIVERSITAS, 21(8), 3525-3533. DOI:https://doi.org/10.13057/biodiv/d210814.
Maxted, N., & Kell, S. P. (2009). Establishment of a global network for the in situ conservation of crop wild relatives: Status and needs. FAO Commission on Genetic Resources for Food and Agriculture, Background Study Paper No. 41. Food and Agriculture Organization of the United Nations. http://www.fao.org/3/i1500e/i1500e.pdf.
Miyasaka, S., Bellinger, M.R., Kantar, M.B. & Helmkampf, M. (2019). Genetic diversity in taro (Colocasia esculenta). Genetic Diversity in Horticultural Plants, pp. 191-215. DOI:https://doi.org/10.1007/978-3-319-96454-6_7.
Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651–681. DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911.
Njuguna, J.W., Karuma, A.N., Gicheru, P. & Onwonga, R.(2023). Effects of watering regimes and planting density on Taro (Colocasia esculenta) growth, yield, and yield components in Embu, Kenya. International Journal of Agronomy. 29, 1-9. DOI:https://doi.org/10.1155/2023/6843217.
Onwueme, I. C. (1999). Tropical root and tuber crops: Production, perspectives and future prospects. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/3/x2588e/x2588e00.htm.
Pitoyo, A.R.I., A.A. Prameta., Marsusi, Suratman, & Suranto. (2018). Morphological, anatomical and isozyme variability among taro (Colocasia esculenta) accessions from south-eastern part of Central Java, Indonesia. Biodiversitas, 19 (5), 1811–1819. DOI:https://doi.org/10.13057/biodiv/d190531.
Santosa, E. (2020). Respon genotipe talas Colocasia esculenta var esculenta dan var antiquorum pada interval pemberian air berbeda. Indonesian Journal of Agronomy. DOI:https://doi.org/10.24831/JAI.V48I3.33136.
Sayer, J., Sunderland, T., Ghazoul, J., Pfund, J. L., Sheil, D., Meijaard, E., … & Kapos, V. (2013). Ten principles for a landscape approach to reconciling agriculture, conserva tion, and other competing land uses. Proceedings of the National Academy of Sciences, 110(21), 8349–8356. DOI: https://doi.org/10.1073/pnas.1210595110.
Setter, T. L. & Waters, I. (2003). Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant and Soil, 253(1), 1–34. DOI:https://doi.org/10.1023/A:1024573305997.
Simamora, R. M., Y. Yulian, Y. & Turmudi, E. (2018). Penampilan 10 jenis talas (Colocasio esculenta (L). Schott) di lahan pesisir Bengkulu. Jurnal Ilmu-Ilmu Pertanian Indonesia, 20(1), 19–25.
Tester, M. & Davenport, R. (2003). Na⁺ tolerance and Na⁺ transport in higher plants. Annals of Botany, 91(5), 503–527. DOI:https://doi.org/10.1093/aob/mcg058.
Trimanto, T. & Sugiyarto. (2010). Characterisation of taro (Colocasia esculenta) based on morphological and isozymic patterns markers. Nusantara Bioscience. 2(1), 7-14. DOI:https://doi.org/10.13057/nusbiosci/n030102.
Yulian, Y., Turmudi, E., Hindarto, K.S., Bustamam, H. & J.N. Hutajulu. (2016). Pertumbuhan vegetatif talas Satoimo & kultivar lokal pada dosis pupuk nitrogen yang berbeda. Akta Agrosia, 16(2): 167–172. DOI:https://doi.org/10.31186/aa.19.2.167-172.
Zhang, H., Mittal, N., Leamy, L. J., Barazani, O. & Song, B. H. (2017). Back into the wild— Apply untapped genetic diversity of wild relatives for crop improvement. Evolutionary Applications, 10(9), 902–915. DOI:https://doi.org/10.1111/eva.12434 .