Main Article Content
Abstract
[SPATIAL DISTRIBUTION SOIL CARBON MARAPI MOUNTAIN]. Volcanic activity will significantly affect the carbon component and its fraction in the soil. Volcanic soils have high carbon content. This study aimeds to map the soil carbon and its fraction vocanic soil of Mt. Marapi. A total of 93 soil samples were taken with a grid interval of 750 x 750 m at a depth of 0-20 cm spread across the Southwest, West and Northwest areas affected by the eruption of Mt. Marapi at a radius of 4.5-7 km from the peak. The parameters analyzed were: bulk density, soil pH, C-organic, C fractions. The results showed that, soil pH ranged from 4.59-6.19 (pH H2O) and 3.8-5.8 (pH KCl), C organic ranged from 3.00%-14.16%, C-very labile ranged from 0.001-0.045%, C-labile ranged from 0.14-1.41%, C boundts non-crystalline clay ranged from 0.20-2.10%, C-metal complex ranged from 0.11-1.70%. Soil pH in Northwest was different from those of in West and Southwest. Very labile carbon in Southwest slope was not the same as those found in West and Northwest. C-metal complex in Northwest soil did not the same as those found in West and Southwest. The diversity of carbon fractions can be used as a reference in tillage to maintain carbon storage and become a marker for soil health.
Article Details
Copyright (c) 2025 Jurnal Ilmu-Ilmu Pertanian Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- Aran, D., Gury, M. & Jeanroy, E. (2001). Organo metallic complexes in an Andosol: A comparative study with a Cambisol and Podzol. Geoderma, 99(1–2), 65–79. DOI:https://doi.org/10.1016/S0016-7061(00)00064-1.
- Auliadesti, V. (2023). Fraksionasi karbon dan stok karbon tanah perkebunan teh Gunung Talang [Skripsi, Universitas Andalas]. Universitas Andalas.
- Dahlgren, R. A., Saigusa, M. & Ugolini, F. C. (2004). The nature, properties and management of volcanic soils. Advances in Agronomy, 82, 113–182. DOI: https://doi.org/10.1016/S0065-2113(03)82003-5.
- Delfianto, R., Rayes, M. L. & Agustina, C. (2021). Morfologi dan klasifikasi tanah pada toposekuen lereng barat Gunung Kelud, Kediri, Jawa Timur. Jurnal Tanah dan Sumberdaya Lahan, 8(2), 539–552. DOI:https://doi.org/10.21776/ub.jtsl.2021.008.2.24.
- Diza, K. V., Zulhemi & Syaryadhi, M. (2017). Monitoring suhu dan kelembaban menggunakan mikrokontroler Atmega328 pada proses dekomposisi pupuk kompos. Jurnal Karya Ilmiah Teknik Elektro, 2(3), 91–98.
- Ermadani, E., Hermansah, H., Yulnafatmawita, Y. & Syarif, A. (2018). Dynamics of soil organic carbon fractions under different land management in wet tropical areas. Jurnal Solum,15(1), 2639. DOI: https://doi.org/10.25077/jsolum.15.1.26-39.2018.
- Farrasati, R., Pradiko, I., Rahutomo, S., Sutarta, E. S., Santoso, H. & Hidayat, F. (2020). C organik tanah di perkebunan kelapa sawit Sumatera Utara: Status dan hubungan dengan beberapa sifat kimia tanah. Jurnal Tanah dan Iklim, 43(2), 157–165. DOI: https://doi.org/10.21082/jti.v43n2.2019.157-165.
- Fiantis, D., Ginting, F. I., Padrikal, R., Prayoga, D., Arianto, B., Fajrianeldi, R. & Nelson, M. (2023). Carbon and phosphorus in volcanic soils of Mt. Kerinci (Sumatra) after long-term tea and paddy cultivation. Communications in Soil Science and Plant Analysis, 54(22), 3169–3184. DOI:https://doi.org/10.1080/00103624.2023.2253843.
- Fiantis, D., Nelson, M., Shamshuddin, J., Goh, T. B. & Van Ranst, E. (2016). Initial carbon storage in new tephra layers of Mt. Talang in Sumatra as affected by pioneer plants. Communications in Soil Science and Plant Analysis, 47(15),1792–1812. DOI:https://doi.org/10.1080/00103624.2016.1208755.
- Fiantis, D., Rudiyanto, Ginting, F. I., Utami, S. R., Sukarman, Anda, M., Jeon, S. H. & Minasny, B. (2022). Sustaining the productivity and eco system services of soils in Indonesia. Geoderma Regional, 28, e00488. DOI:https://doi.org/10.1016/j.geodrs.2022.e00488.
- Fiantis, D., Rudiyanto, Gusnidar, Ginting, F. I., Padrikal, R., Prayoga, D., Arianto, B., Fajrianeldi, R. & Nelson, M. (2023). Carbon and phosphorus in volcanic soils of Mt. Kerinci (Sumatra) after long-term tea and paddy cultivation. Communications in Soil Science and Plant Analysis, 54(22), 3169–3184. DOI:https://doi.org/10.1080/00103624.2023.
- Fiantis, D., Yulanda, N., Ginting, F. I. & Agustian. (2024). Digital mapping of soil organic carbon in volcanic soils after prolonged eruption Mt. Sinabung, Karo Regency, North Sumatra, Indonesia. IOP Conference Series: Earth and Environmental Science, 1306(1), 012024. DOI: https://doi.org/10.1088/1755-1315/1306/1/012024.
- Grazia, M., Figlia, D., Bellanca, A., Neri, R. & Stefansson, A. (2007). Chemical weathering of volcanic rocks at the island of Pantelleria, Italy: Information from soil profile and soil solution investigations. Chemical Geology, 246, 1–18. DOI:https://doi.org/10.1016/j.chemgeo.2007.07.025.
- Harsh, J., Chorover, J. & Nizeyimana, E. (2002). Allophane and imogolite. In J. B. Dixon & D. G. Schulze (Eds.), Soil mineralogy with environmental applications (pp. 291–322). Soil Science Society of America. DOI:https://doi.org/10.2136/sssabookser7.c9.
- Haynes, R. J. (2005). Labile organic matter fractions as central components of the quality of agri cultural soils: An overview. Advances in Agronomy, 85, 221–268. DOI: https://doi.org/10.1016/S0065-2113(04)85005-3.
- Krauss, M., Ruser, R., Müller, T., Hansen, S., Mäder, P. & Gattinger, A. (2017). Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass clover ley–winter wheat cropping sequence. Agriculture, Ecosystems & Environment, 239, 324–333. DOI: https://doi.org/10.1016/j.agee.2017.01.029.
- Liu, X., Rezaei, M., Van Zwieten, L., Esfandbod, M., Rose, M. T. & Chen, C. (2023). Microbial carbon functional responses to compaction and moisture stresses in two contrasting Australian soils. Soil & Tillage Research, 234,105825. DOI: https://doi.org/10.1016/j.still.2023.105825.
- Liyanda, M., Karim, A. & Abubakar, Y. (2012). Analysis of land suitability criteria for cocoa production of three cluster development in Pidie District. Agrista, 16(2), 62–79. http://jurnal.unsyiah.ac.id/agrista/article/view/289.
- Lyu, H., Watanabe, T., Kilasara, M. & Funakawa, S. (2018). Effects of climate on distribution of soil secondary minerals in volcanic regions of Tanzania. Catena, 166, 209–219. DOI:https://doi.org/10.1016/j.catena.2018.04.005.
- Neculman, R., Rumpel, C., Matus, F., Godoy, R., Steffens, M. & de la Luz Mora, M. (2013). Organic matter stabilization in two Andisols of contrasting age under temperate rain forest. Biology and Fertility of Soils, 49(6), 681–689. DOI:https://doi.org/10.1007/s00374-012.0758-2.
- Nikpey, M., Sedighkia, M. & Nateghi, M. B. (2017). Comparison of spatial interpolation methods for mapping the qualitative properties of soil. Advances in Agricultural Science, 5(3), 1–15. http://www.aaasjournal.org.
- Ozaytekin, H. H. (2011). Soil formation overlying volcanic materials at Mount Erenler, Konya, Turkey. Turkish Journal of Agriculture and Forestry, 35, 545–562. DOI: https://doi.org/10.3906/tar-1102-2.
- Panichini, M., Neculman, R., Godoy, R., Arancibia Miranda, N. & Matus, F. (2017). Understanding carbon storage in volcanic soils under selectively logged temperate rainforests. Geoderma, 302, 76–88. DOI:https://doi.org/10.1016/j.geoderma.2017.04.023.
- Pires, C. V., Schaefer, C. E. R. G., Hashigushi, A. K., Thomazini, A., Filho, E. I. F. & Mendonça, E. S. (2017). Soil organic carbon and nitrogen pools drive soil C-CO₂ emissions from selected soils in Maritime Antarctica. Science of the Total Environment, 596–597, 124–135. DOI:https://doi.org/10.1016/j.scitotenv.2017.03.144.
- Seprianto. (2016). Fraksionasi karbon tanah vulkanis di Kecamatan 2 x 11 Enam Lingkung Kabupaten Padang Pariaman [Skripsi, Universitas Andalas]. Universitas Andalas.
- Siregar, P., Fauzi & Supriadi. (2017). Effect of giving some organic matter and incubation period to some chemical fertility aspects of Ultisol. Jurnal Agroekoteknologi, 5(2), 256264.
- Smith, P., Haberl, H., Popp, A., Erb, K.-H., Lauk, C., Harper, R., Tubiello, F. N., de Siqueira Pinto, A., Jafari, M., Sohi, S., Masera, O., Böttcher, H., Berndes, G., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., Mbow, C., … Rose, S. (2013). How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biology, 19(8), 2285–2302. DOI:https://doi.org/10.1111/gcb.12160.
- Susanti, A., Khalil, M. & Sufardi, S. (2021). Evaluasi cadangan karbon tanah pada beberapa tipe penggunaan lahan kering di Kecamatan Blang Bintang Kabupaten Aceh Besar. Jurnal Ilmiah Mahasiswa Pertanian, 6(2), 69–78. DOI:https://doi.org/10.17969/jimfp.v6i2.16960.
- Tabri, F., Aqil, M. & Efendi, R. (2018). Uji aplikasi berbagai tingkat dosis pupuk ZA terhadap produktivitas dan mutu jagung. Indonesian Journal of Fundamental Sciences, 4(1), 24–30. DOI:https://doi.org/10.26858/ijfs.v4i1.6012.
- Takahashi, T. & Dahlgren, R. A. (2016). Nature, properties and function of aluminum-humus complexes in volcanic soils. Geoderma, 263, 110–121. DOI:https://doi.org/10.1016/j.geoderma.2015.08.032.
- Uchida, Y., Nishimura, S. & Akiyama, H. (2012). The relationship of water-soluble carbon and hot-water-soluble carbon with soil respiration in agricultural fields. Agriculture, Ecosystems & Environment, 156, 116–122. DOI:https://doi.org/10.1016/j.agee.2012.05.012.
- Ulfa, N., Yulnafatmawita, Y. & Rasyidin, A. (2024). Kajian sifat fisika tanah pada beberapa umur tanaman kelapa sawit (Elaeis guineensis Jacq.) rakyat di Nagari Ladang Panjang Kabupaten Pasaman, Sumatera Barat. Agrikultura, 35(2), 365–376. DOI:https://doi.org/10.24198/agrikultura.v35i2.55692.
- Wahyuni, E. T., Triyono, S. & Suherman. (2012). Penentuan komposisi kimia abu vulkanik dari erupsi Gunung Merapi. Jurnal Manusia dan Lingkungan, 19(2), 150–159.
- Wang, W. J., Baldock, J. A., Dalal, R. C. & Moody, P. W. (2004). Decomposition dynamics of plant materials in relation to nitrogen availability and biochemistry determined by NMR and wet chemical analysis. Soil Biology and Bio chemistry, 36, 2045–2058. DOI: https://doi.org/10.1016/j.soilbio.2004.05.023.
- Yuliana, A., Arifin, M. & Nurlaeny, N. (2017). Pengaruh partikel nano abu vulkanik dan batuan fosfat terhadap muatan variabel dan kemasaman Andisol. Agrikultura, 28(3), 118–125. DOI:https://doi.org/10.24198/agrikultura.v28i3.15743.
- Zamanian, K. & Kuzyakov, Y. (2019). Contribution of soil inorganic carbon to atmospheric CO₂: More important than previously thought. Global Change Biology, 25(1), e1–e3. DOI:https://doi.org/10.1111/gcb.14463.
References
Aran, D., Gury, M. & Jeanroy, E. (2001). Organo metallic complexes in an Andosol: A comparative study with a Cambisol and Podzol. Geoderma, 99(1–2), 65–79. DOI:https://doi.org/10.1016/S0016-7061(00)00064-1.
Auliadesti, V. (2023). Fraksionasi karbon dan stok karbon tanah perkebunan teh Gunung Talang [Skripsi, Universitas Andalas]. Universitas Andalas.
Dahlgren, R. A., Saigusa, M. & Ugolini, F. C. (2004). The nature, properties and management of volcanic soils. Advances in Agronomy, 82, 113–182. DOI: https://doi.org/10.1016/S0065-2113(03)82003-5.
Delfianto, R., Rayes, M. L. & Agustina, C. (2021). Morfologi dan klasifikasi tanah pada toposekuen lereng barat Gunung Kelud, Kediri, Jawa Timur. Jurnal Tanah dan Sumberdaya Lahan, 8(2), 539–552. DOI:https://doi.org/10.21776/ub.jtsl.2021.008.2.24.
Diza, K. V., Zulhemi & Syaryadhi, M. (2017). Monitoring suhu dan kelembaban menggunakan mikrokontroler Atmega328 pada proses dekomposisi pupuk kompos. Jurnal Karya Ilmiah Teknik Elektro, 2(3), 91–98.
Ermadani, E., Hermansah, H., Yulnafatmawita, Y. & Syarif, A. (2018). Dynamics of soil organic carbon fractions under different land management in wet tropical areas. Jurnal Solum,15(1), 2639. DOI: https://doi.org/10.25077/jsolum.15.1.26-39.2018.
Farrasati, R., Pradiko, I., Rahutomo, S., Sutarta, E. S., Santoso, H. & Hidayat, F. (2020). C organik tanah di perkebunan kelapa sawit Sumatera Utara: Status dan hubungan dengan beberapa sifat kimia tanah. Jurnal Tanah dan Iklim, 43(2), 157–165. DOI: https://doi.org/10.21082/jti.v43n2.2019.157-165.
Fiantis, D., Ginting, F. I., Padrikal, R., Prayoga, D., Arianto, B., Fajrianeldi, R. & Nelson, M. (2023). Carbon and phosphorus in volcanic soils of Mt. Kerinci (Sumatra) after long-term tea and paddy cultivation. Communications in Soil Science and Plant Analysis, 54(22), 3169–3184. DOI:https://doi.org/10.1080/00103624.2023.2253843.
Fiantis, D., Nelson, M., Shamshuddin, J., Goh, T. B. & Van Ranst, E. (2016). Initial carbon storage in new tephra layers of Mt. Talang in Sumatra as affected by pioneer plants. Communications in Soil Science and Plant Analysis, 47(15),1792–1812. DOI:https://doi.org/10.1080/00103624.2016.1208755.
Fiantis, D., Rudiyanto, Ginting, F. I., Utami, S. R., Sukarman, Anda, M., Jeon, S. H. & Minasny, B. (2022). Sustaining the productivity and eco system services of soils in Indonesia. Geoderma Regional, 28, e00488. DOI:https://doi.org/10.1016/j.geodrs.2022.e00488.
Fiantis, D., Rudiyanto, Gusnidar, Ginting, F. I., Padrikal, R., Prayoga, D., Arianto, B., Fajrianeldi, R. & Nelson, M. (2023). Carbon and phosphorus in volcanic soils of Mt. Kerinci (Sumatra) after long-term tea and paddy cultivation. Communications in Soil Science and Plant Analysis, 54(22), 3169–3184. DOI:https://doi.org/10.1080/00103624.2023.
Fiantis, D., Yulanda, N., Ginting, F. I. & Agustian. (2024). Digital mapping of soil organic carbon in volcanic soils after prolonged eruption Mt. Sinabung, Karo Regency, North Sumatra, Indonesia. IOP Conference Series: Earth and Environmental Science, 1306(1), 012024. DOI: https://doi.org/10.1088/1755-1315/1306/1/012024.
Grazia, M., Figlia, D., Bellanca, A., Neri, R. & Stefansson, A. (2007). Chemical weathering of volcanic rocks at the island of Pantelleria, Italy: Information from soil profile and soil solution investigations. Chemical Geology, 246, 1–18. DOI:https://doi.org/10.1016/j.chemgeo.2007.07.025.
Harsh, J., Chorover, J. & Nizeyimana, E. (2002). Allophane and imogolite. In J. B. Dixon & D. G. Schulze (Eds.), Soil mineralogy with environmental applications (pp. 291–322). Soil Science Society of America. DOI:https://doi.org/10.2136/sssabookser7.c9.
Haynes, R. J. (2005). Labile organic matter fractions as central components of the quality of agri cultural soils: An overview. Advances in Agronomy, 85, 221–268. DOI: https://doi.org/10.1016/S0065-2113(04)85005-3.
Krauss, M., Ruser, R., Müller, T., Hansen, S., Mäder, P. & Gattinger, A. (2017). Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass clover ley–winter wheat cropping sequence. Agriculture, Ecosystems & Environment, 239, 324–333. DOI: https://doi.org/10.1016/j.agee.2017.01.029.
Liu, X., Rezaei, M., Van Zwieten, L., Esfandbod, M., Rose, M. T. & Chen, C. (2023). Microbial carbon functional responses to compaction and moisture stresses in two contrasting Australian soils. Soil & Tillage Research, 234,105825. DOI: https://doi.org/10.1016/j.still.2023.105825.
Liyanda, M., Karim, A. & Abubakar, Y. (2012). Analysis of land suitability criteria for cocoa production of three cluster development in Pidie District. Agrista, 16(2), 62–79. http://jurnal.unsyiah.ac.id/agrista/article/view/289.
Lyu, H., Watanabe, T., Kilasara, M. & Funakawa, S. (2018). Effects of climate on distribution of soil secondary minerals in volcanic regions of Tanzania. Catena, 166, 209–219. DOI:https://doi.org/10.1016/j.catena.2018.04.005.
Neculman, R., Rumpel, C., Matus, F., Godoy, R., Steffens, M. & de la Luz Mora, M. (2013). Organic matter stabilization in two Andisols of contrasting age under temperate rain forest. Biology and Fertility of Soils, 49(6), 681–689. DOI:https://doi.org/10.1007/s00374-012.0758-2.
Nikpey, M., Sedighkia, M. & Nateghi, M. B. (2017). Comparison of spatial interpolation methods for mapping the qualitative properties of soil. Advances in Agricultural Science, 5(3), 1–15. http://www.aaasjournal.org.
Ozaytekin, H. H. (2011). Soil formation overlying volcanic materials at Mount Erenler, Konya, Turkey. Turkish Journal of Agriculture and Forestry, 35, 545–562. DOI: https://doi.org/10.3906/tar-1102-2.
Panichini, M., Neculman, R., Godoy, R., Arancibia Miranda, N. & Matus, F. (2017). Understanding carbon storage in volcanic soils under selectively logged temperate rainforests. Geoderma, 302, 76–88. DOI:https://doi.org/10.1016/j.geoderma.2017.04.023.
Pires, C. V., Schaefer, C. E. R. G., Hashigushi, A. K., Thomazini, A., Filho, E. I. F. & Mendonça, E. S. (2017). Soil organic carbon and nitrogen pools drive soil C-CO₂ emissions from selected soils in Maritime Antarctica. Science of the Total Environment, 596–597, 124–135. DOI:https://doi.org/10.1016/j.scitotenv.2017.03.144.
Seprianto. (2016). Fraksionasi karbon tanah vulkanis di Kecamatan 2 x 11 Enam Lingkung Kabupaten Padang Pariaman [Skripsi, Universitas Andalas]. Universitas Andalas.
Siregar, P., Fauzi & Supriadi. (2017). Effect of giving some organic matter and incubation period to some chemical fertility aspects of Ultisol. Jurnal Agroekoteknologi, 5(2), 256264.
Smith, P., Haberl, H., Popp, A., Erb, K.-H., Lauk, C., Harper, R., Tubiello, F. N., de Siqueira Pinto, A., Jafari, M., Sohi, S., Masera, O., Böttcher, H., Berndes, G., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., Mbow, C., … Rose, S. (2013). How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biology, 19(8), 2285–2302. DOI:https://doi.org/10.1111/gcb.12160.
Susanti, A., Khalil, M. & Sufardi, S. (2021). Evaluasi cadangan karbon tanah pada beberapa tipe penggunaan lahan kering di Kecamatan Blang Bintang Kabupaten Aceh Besar. Jurnal Ilmiah Mahasiswa Pertanian, 6(2), 69–78. DOI:https://doi.org/10.17969/jimfp.v6i2.16960.
Tabri, F., Aqil, M. & Efendi, R. (2018). Uji aplikasi berbagai tingkat dosis pupuk ZA terhadap produktivitas dan mutu jagung. Indonesian Journal of Fundamental Sciences, 4(1), 24–30. DOI:https://doi.org/10.26858/ijfs.v4i1.6012.
Takahashi, T. & Dahlgren, R. A. (2016). Nature, properties and function of aluminum-humus complexes in volcanic soils. Geoderma, 263, 110–121. DOI:https://doi.org/10.1016/j.geoderma.2015.08.032.
Uchida, Y., Nishimura, S. & Akiyama, H. (2012). The relationship of water-soluble carbon and hot-water-soluble carbon with soil respiration in agricultural fields. Agriculture, Ecosystems & Environment, 156, 116–122. DOI:https://doi.org/10.1016/j.agee.2012.05.012.
Ulfa, N., Yulnafatmawita, Y. & Rasyidin, A. (2024). Kajian sifat fisika tanah pada beberapa umur tanaman kelapa sawit (Elaeis guineensis Jacq.) rakyat di Nagari Ladang Panjang Kabupaten Pasaman, Sumatera Barat. Agrikultura, 35(2), 365–376. DOI:https://doi.org/10.24198/agrikultura.v35i2.55692.
Wahyuni, E. T., Triyono, S. & Suherman. (2012). Penentuan komposisi kimia abu vulkanik dari erupsi Gunung Merapi. Jurnal Manusia dan Lingkungan, 19(2), 150–159.
Wang, W. J., Baldock, J. A., Dalal, R. C. & Moody, P. W. (2004). Decomposition dynamics of plant materials in relation to nitrogen availability and biochemistry determined by NMR and wet chemical analysis. Soil Biology and Bio chemistry, 36, 2045–2058. DOI: https://doi.org/10.1016/j.soilbio.2004.05.023.
Yuliana, A., Arifin, M. & Nurlaeny, N. (2017). Pengaruh partikel nano abu vulkanik dan batuan fosfat terhadap muatan variabel dan kemasaman Andisol. Agrikultura, 28(3), 118–125. DOI:https://doi.org/10.24198/agrikultura.v28i3.15743.
Zamanian, K. & Kuzyakov, Y. (2019). Contribution of soil inorganic carbon to atmospheric CO₂: More important than previously thought. Global Change Biology, 25(1), e1–e3. DOI:https://doi.org/10.1111/gcb.14463.