Main Article Content

Abstract

[SPATIAL ANALYSIS OF THE IMPACT OF CLIMATE VARIABILITY ON LAND SUITABILITY POTENTIAL FOR BLACK PEPPER (Piper nigrum L.) Cultivation In The Bangka Belitung Islands]. The Bangka Belitung Islands are a major center of pepper production in Indonesia; however, over the past decade, cultivated area and productivity have declined due to climate variability and limited land biophysical information. This study aims to analyze land suitability for pepper (Piper nigrum L.) cultivation based on climatic, topographic, and soil indicators, as well as to evaluate the effect of climate variability on changes in land potential across the island region. The data used include rainfall observations from 71 rain gauges during 2014–2023, ERA5 reanalysis data for surface temperature, humidity, and solar radiation, and maps of slope and soil types as physiographic parameters. All parameters were processed using a Geographic Information System with the Inverse Distance Weighting (IDW) interpolation method to generate the spatial distribution of climate variables, while a weighted overlay method was applied to determine land suitability classes. Validation was conducted by comparing ERA5 data with observational data to ensure the consistency of spatial climate patterns. The results indicate that climate variability contributes to a decline in land suitability in coastal areas with soil textures that are sensitive to environmental changes. Most of the area, covering 1,189.76 ha, is classified as Highly Suitable (S1) and is distributed in central Bangka Island and parts of Belitung Island. Meanwhile, 452.65 ha are classified as Moderately Suitable (S2) and are predominantly located in coastal areas with soil limitations and coastal environmental influences. These findings highlight the importance of climate adaptation strategies to support sustainable national pepper cultivation.


Full txt pdf

Article Details

Author Biographies

Fatrina Aprilia Sari, Fakultas Pascasarjana, Universitas Sriwijaya, Sumatera Selatan

Program Magister Manajemen Lingkungan

Stasiun Klimatologi Bangka Belitung, Kep. Bangka Belitung

Mokhamad Yusup Nur Khakim, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sriwijaya, Sumatera Selatan


Jurusan Fisika

Budhi Setiawan, Fakultas Teknik, Universitas Sriwijaya, Sumatera Selatan


Jurusan Teknik Geologi

How to Cite
Sari, F. A., Khakim, M. Y. N., Setiawan, B., & Simanjuntak, P. P. (2025). ANALISIS SPASIAL DAMPAK VARIABILITAS IKLIM TERHADAP POTENSI KESESUAIAN LAHAN UNTUK BUDIDAYA TANAMAN LADA (Piper nigrum L.) DI KEPULAUAN BANGKA BELITUNG . Jurnal Ilmu-Ilmu Pertanian Indonesia, 27(2), 148–155. https://doi.org/10.31186/jipi.27.2.148-155

References

  1. Asmarhansyah, Badayos, R. B., Sanchez, P. B., Cruz, P. C. S. & Florece, L. M. (2017). Land suitability evaluation of abandoned tin-mining areas for agricultural development in Bangka Island, Indonesia. Journal of Degraded and Mining Lands Management, 4(4), 907–918. https://doi.org/10.15243/jdmlm.2017.044.907.
  2. BPS. (2023). Statistik Indonesia 2023 (Catalog No. 1101001). Badan Pusat Statistik.
  3. Chakri, A., Abakarim, S., Rodrigues, J. C. A., Laftouhi, N., Ibouh, H., Zouhri, L. & Zaitseva, E. (2025). Spatial bias correction of ERA5-Agreanalysis precipitation using machine learning models in semi-arid region of Morocco. Production Scientifique, 16, 1–35. DOI: https://doi.org/10.3390/atmos16111234.
  4. Danuartha, D., Santi, R., Pratama, D. & Setiawan, F. (2023). Evaluasi kesesuaian lahan tanaman lada di Kabupaten Bangka Selatan. Agrisaintifika Jurnal Ilmu-Ilmu Pertanian, 7(2), 53–65. DOI: https://doi.org/10.32585/ags.v7i2(is).4348.
  5. Darmawana, N., Muliadi & Adriata, R. (2023). Perbandingan metode interpolasi menggunakan data CHIRPS untuk sebaran curah hujan di Kabupaten Kubu Raya. Prisma Fisika, 11(2),42–50. DOI:https://doi.org/10.26418/pf.v11i2.65013.
  6. Evizal, R. (2023). Pengelolaan perkebunan lada. Pusaka Media. http://www.pusakamedia.com
  7. FAO. (1976). A framework for land evaluation (FAO Soils Bulletin). Food and Agriculture Organization of the United Nations. https://www.fao.org/3/x5310e/x5310e00.htm.
  8. FAO. (2023). FAOSTAT: Crops and livestock products. https://www.fao.org/faostat.
  9. Ferreira, T. R., Sallin, V. P., Neto, B. C., Crasque, J., Pires, A. & Rodrigues, P. S. (2024). Morphophysiological responses of black pepper to recurrent water deficit. Plant Science, 62(3), 292–301. DOI: https://doi.org/10.32615/ps.2024.030.
  10. Firdaus, Hendri, J. & Saidi, B. B. (2022). Evaluasi kesesuaian lahan untuk pengembangan komoditas lada di Kabupaten Tanjung Jabung Timur. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 6(2), 181–191. DOI: https://doi.org/10.22437/iituj.v6i2.22955.
  11. García, L., Pérez, J. & Martínez, R. (2021). Land suitability assessment for tropical perennial crops using integrated climate–soil indicators. Agricultural Systems, 190, Article 103118. DOI: https://doi.org/10.1016/j.agsy.2021.103118.
  12. Hariyanto, B. W. R. L. (2019). Analisis sifat fisika tanah pada berbagai kelas lereng di lahan budidaya tanaman lada (Piper nigrum L.) Dusun Sekunyit Desa Semanget Kecamatan Entikong. Jurnal Sains Pertanian Equator, 8(2). DOI: https://doi.org/10.26418/jspe.v8i2.31493.
  13. Indarto. (2013). Variabilitas spasial hujan harian di Jawa Timur. Jurnal Teknik Sipil, 20(2), 107–120. IPC. (2023). Annual pepper statistical bulletin. https://www.ipcnet.org.
  14. Masangge, Y., Anggorowati, D. & Palupi, T. (2023). Respon pertumbuhan setek lada akibat aplikasi PGPR dan kompos tandan kosong kelapa sawit pada tanah aluvial. JSPE Jurnal Sains Pertanian Equator, 488–495. DOI: https://doi.org/10.26418/jspe.v12i3.61401.
  15. Mujiyo, Sutarno, Suwarto, Budiono, R. & Sutopo, N. R. (2020). Inhibiting factors of land suitability for Piper nigrum L. in a hilly area of Tirtomoyo District, Central Java. Jurnal Tanah dan Sumberdaya Lahan, 25(1), 29–37. DOI: https://doi.org/10.5400/jts.2020.v25i1.29.
  16. Oliveira, M. G., Oliosi, G., Partelli, F. L. & Ramalho, J. C. (2018). Physiological responses of photosynthesis in black pepper plants under different shade levels promoted by intercropping with rubber trees. C Ciência e Agrotecnologia, 42(5), 513–526. DOI: https://doi.org/10.1590/1413-70542018425020418.
  17. Paski, J. A. I. & Sepriando, A. (2017). Pemetaan agroklimat klasifikasi Oldeman di Provinsi Bengkulu menggunakan data observasi permukaan dan multisatelit (TMPA dan IMERG). Ilmiah Sains, 17(2), 97–104.
  18. Rahman, F. A., Hadisah, M. & Suryawati, S. (2025). Climate analysis based on remote sensing. Journal of Soilscape and Agriculture, 4(1),1121. DOI: https://doi.org/10.19184/jsa.v4i1.6244.
  19. Rasyid, M. L., Mulyono, M. & Aini, L. N. (2019). Evaluasi kesesuaian lahan untuk tanaman lada (Piper nigrum L.) di Kecamatan Membalong, Kabupaten Belitung, Bangka Belitung. [Laporan Penelitian], 3, 1–18.
  20. Ritung, S., Nugroho, K., A. K. M. & Suryani, E. (2007). Evaluasi kesesuaian lahan untuk komoditas pertanian. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian.
  21. Shaliha, M. B., Jahroh, S. & Johar, S. (2022). Strategi pengembangan agribisnis lada putih di Provinsi Kepulauan Bangka Belitung. Jurnal Pendidikan Tambusai, 6(2), 13718–13724. JIPI. 27(2), 148-155 (2025)
  22. Simanjuntak, P. P., Rosyia, D., Kendita, N., Qalbi, D. & Safril, A. (2023). Kajian komponen angin zonal dan meridional sebagai prekursor penentu awal musim di Palembang serta pengaruh ENSO dan IOD terhadap variasinya. JRST Jurnal Riset Sains dan Teknologi, 5(1), 23–30. DOI: https://doi.org/10.30595/jrst.v5i1.6635.
  23. Sitepu, H., Harisuseno, D. & Fidari, J. S. (2023). Evaluasi data curah hujan satelit ERA-5 pada berbagai periode data hujan di Sub DAS Bodor. Jurnal Teknologi dan Rekayasa Sumber Daya Air, 3(2), 626–636.
  24. WMO. (2022). State of the global climate 2022. World Meteorological Organization. https://public.wmo.int
  25. Yudiyanto, Rizali, A., Munif, A., Setiadi, D. & Qayim, I. (2014). Environmental factors affecting productivity of two Indonesian varieties of black pepper (Piper nigrum L.). AGRIVITA Journal of Agricultural Science, 36(3), 278–284.DOI: http://doi.org/10.17503/agrivita.v36i3.456.