Isi Artikel Utama

Abstrak

Penelitian ini bertujuan menganalisis efektivitas investasi saham di pasar modal Indonesia dengan menggunakan pendekatan kuantitatif deskriptif. Penelitian ini menggunakan data historis harga saham dan berbagai indikator teknikal, seperti Exponential Moving Averaga (EMA), Stochastic Oscillators (SO), dan Trendlines, untuk menentukan strategi investasi yang optimal. Dengan menggunakan metode kuantitatif deskriptif, penelitian ini bertujuan untuk menyelidiki status, kondisi, atau memprediksi kejadian di masa yang akan datang secara faktual, sistematis, dan akurat. Penelitian ini menggunakan data dari 31 emiten yang memenuhi kriteria purposive sampling yang diambil dari indeks LQ45 dan telah terdaftar di Bursa Efek Indonesia sejak tahun 2017. Data yang dianalisis mencakup periode 5 tahun, yaitu dari tahun 2018 hingga 2022, dengan total 1219 hari perdagangan. Analisis data dilakukan menggunakan perangkat lunak Eviews 9, dengan fokus pada persentase keuntungan/kerugian dari sinyal beli dan jual yang muncul. Hasil penelitian menunjukkan bahwa EMA dan SO memiliki pengaruh positif yang signifikan terhadap MP, sedangkan TL tidak menunjukkan pengaruh yang signifikan. Uji Sobel untuk menguji efek mediasi menunjukkan bahwa EMA yang dimediasi oleh TL memiliki pengaruh positif yang signifikan terhadap MP, sedangkan SO yang dimediasi oleh TL menunjukkan pengaruh negatif. Pembahasan ini menekankan bahwa EMA dan SO dapat membantu investor dalam mengidentifikasi tren pasar dan momentum, sehingga memungkinkan mereka untuk mengambil keputusan investasi yang lebih baik dan lebih optimal.

Rincian Artikel

Cara Mengutip
Analysis Of The Use Of Technical Indicators And Trendlines In Maximizing Stock Investment Profits In The Capital Market Indonesia. (2025). The Manager Review, 7(1), 23–30. https://doi.org/10.33369/tmr.v7i1.41291

Referensi

    Kurniawan, A. W., & Puspitaningtyas, Z. (2014). Penelitian kuantitatif: Metode penelitian kuantitatif. https://repo.unikadelasalle.ac.id

    Ahmadi, E., Jasemi, M., Monplaisir, L., Nabavi, M. A., Mahmoodi, A., & Jam, P. A. (2018). New efficient hybrid candlestick technical analysis model for stock market timing on the basis of the support vector machine and heuristic algorithms of imperialist competition and genetic. Expert Systems with Applications, 94, 21–31. https://doi.org/10.1016/j.eswa.2017.10.023

    Alajbeg, D., Bubaš, Z., & Vukas, J. (2012). The effectiveness of the 50/200 dual exponential moving average crossover on the S&P 500. ASBBS eJournal, 8(1), 8–20.

    Ali, Z. H., & Jabr. (2022). Analysis of the trend of stock prices using the Dow Jones theory: An applied study in the Iraqi stock exchange. Journal of Administration and Economics.

    Anderson, S. (2022). Which indicators best complement the exponential moving average (EMA)? Investopedia. https://www.investopedia.com/ask/answers/122314/what-are-best-technical-indicators-complement-exponential-moving-average-ema.asp

    Anthony, & Anggono, A. H. (2019). Investment strategy based on exponential moving average and count back line. Review of Integrative Business and Economics Research, 8(4), 153–161.

    Antonacci, G. (2014). Dual momentum investing. Comintel.

    Appel, G. (2005). Technical analysis: Power tools for active investors. https://dl.acm.org

    Aprillianto, B., Wulandari, N., & Kurrohman, T. (2015). Perilaku investor saham individual dalam pengambilan keputusan investasi: Studi hermeneutika-kritis. e-Journal Ekonomi Bisnis dan Akuntansi, 1(1), 16–31.

    Arikunto, S. (2006). Dasar-dasar evaluasi. Jakarta: Bumi Aksara.

    Bajo, E., Croci, E., & Marinelli, N. (2020). Institutional investor networks and firm value. Journal of Business Research, 112, 65–80. https://doi.org/10.1016/j.jbusres.2020.02.041

    Bajzik, J. (2021). Trading volume and stock returns: A meta-analysis. International Review of Financial Analysis, 78. https://doi.org/10.1016/j.irfa.2021.101923

    Barber, B. M., & Odean, T. (2000). Trading is hazardous to your wealth: The common stock investment performance of individual investors. Journal of Finance, 55(2), 773–806. https://doi.org/10.1111/0022-1082.00226

    Barberis, N. (2018). Psychology-based models of asset prices and trading volume. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.317761

    Corielli, F., & Penati, A. (1996). Long-run equity risk and dynamic trading strategies: A simulation exercise for the Italian stock market. Ricerche Economiche, 50(1), 27–56. https://doi.org/10.1006/reco.1996.0002

    Crane, D. B. (2021). American Finance Association. Journal of Finance, 76(1), 485–486. https://doi.org/10.1111/jofi.12791

    Degiannakis, S., & Filis, G. (2017). Forecasting oil price realized volatility using information channels from other asset classes. Journal of International Money and Finance, 76, 28–49. https://doi.org/10.1016/j.jimonfin.2017.05.006

    Dočekalová, M. P., & Kocmanová, A. (2018). Comparison of sustainable environmental, social, and corporate governance value added models for investors decision making. Sustainability, 10(3). https://doi.org/10.3390/su10030649

    Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance.

    Fama, E. F., & Blume, M. E. (1966). Filter rules and stock-market trading. The Journal of Business, 39(S1), 226. https://doi.org/10.1086/294849

    Fisher, R., & Fisher, J. (2003). Candlesticks, Fibonacci, and chart pattern trading tools.

    Ghozali, I. (2005). Metode penelitian bisnis. Semarang: Bagian Penerbitan FE-UNDIP.

    Graham, B. (1973). The intelligent investor: The definitive book on value investing. Innovations: Technology, Governance, Globalization, 6(3), 9–18.

    Grebenkov, D. S., & Serror, J. (2014). Following a trend with an exponential moving average: Analytical results for a Gaussian model. Physica A, 394, 288–303. https://doi.org/10.1016/j.physa.2013.10.007

    Gregoriou, G. N. (2009). Stock market volatility (M. K. Ong, Ed.). CRC Press.

    Gujarati, D. N. (2003). Basic econometrics (Vol. 82).

    Hale, B. (2023). The only technical analysis. HMDpublishing.

    Hansun, S. (2013). A new approach of moving average method in time series analysis. In 2013 International Conference on New Media Studies (CoNMedia 2013). https://doi.org/10.1109/conmedia.2013.6708545

    Harford, J., Kecskés, A., & Mansi, S. (2018). Do long-term investors improve corporate decision making? Journal of Corporate Finance, 50, 424–452. https://doi.org/10.1016/j.jcorpfin.2017.09.022

    Harris, L. (1986). Cross-security tests of the mixture of distributions hypothesis. The Journal of Financial and Quantitative Analysis, 21(1), 39. https://doi.org/10.2307/2330989

    Harris, L. (1987). Transaction data tests of the mixture of distributions hypothesis. The Journal of Financial and Quantitative Analysis, 22(2), 127. https://doi.org/10.2307/2330708

    Hase, G. J., & Haryono, N. A. (2018). Pengujian efisiensi pasar pada pasar modal Indonesia periode Juni 2009 - Juni 2015 (Studi pada indeks harga saham gabungan). Jurnal Ilmu Manajemen (JIM), 6(4), 550–558.

    Hattori, T., & Yoshida, J. (2020). Bank of Japan as a contrarian stock investor: Large-scale ETF purchases. SSRN Electronic Journal.

    Hidayat, M. A. (2022). Analisis teknikal pergerakan harga saham dengan indikator candlestick, moving average, dan stochastic oscillator, 36–42.

    Umiyati, H. (2021). Populasi dan teknik sampel (Fenomena pernikahan di bawah umur masyarakat 5.0 di kota/kabupaten X). Universitas Islam Negeri Alauddin Makassar, 2–25.

    Irfansyah, F. F. (2020). Penerapan indikator stochastic oscillator dan metode buy and hold untuk memperoleh capital gain pada saham LQ45 di PT. FAC. https://eprints.uty.ac.id

    Jen, F. C. (1970). Random walks and technical theories: Some additional evidence: Discussion. The Journal of Finance, 25(2), 495. https://doi.org/10.2307/2325498

    Jennings, R. H., & Barry, C. B. (1983). Information dissemination and portfolio choice. The Journal of Financial and Quantitative Analysis, 18(1), 1.

    Jennings, R. H., Starks, L. T., & Fellingham, J. C. (1981). An equilibrium model of asset trading with sequential information arrival. The Journal of Finance, 36(1), 143.

    Jones, C. P. (2000). Investment analysis and management. John Wiley and Sons.

    Jones, T. M. (1995). Instrumental stakeholder theory: A synthesis of ethics and economics. Academy of Management Review, 20(2), 404–437. https://doi.org/10.5465/amr.1995.9507312924

    Kang, S. H., Jiang, Z., Lee, Y., & Yoon, S. M. (2010). Weather effects on the returns and volatility of the Shanghai stock market. Physica A: Statistical Mechanics and its Applications, 389(1), 91–99. https://doi.org/10.1016/j.physa.2009.09.010