Main Article Content

Abstract

This study aims to analyze the effectiveness of stock investment in the Indonesian capital market using a descriptive quantitative approach. This study uses historical stock price data and various technical indicators, such as Exponential Moving Average (EMA), Stochastic Oscillators, and Trendlines, to determine the optimal investment strategy. By using a descriptive quantitative method, this study aims to investigate the status, condition, or predict future events factually, systematically, and accurately. This study uses data from 31 issuers that meet the Purposive sampling criteria, taken from the LQ45 index and have been listed on the Indonesia Stock Exchange since 2017. The data analyzed covers a 5-year period from 2018 to 2022, with a total of 1219 days. Data analysis was carried out using Eviews 9 software, focusing on the percentage of profit/loss from the buy and sell signals that appeared. The results of direct testing show that EMA and SO have a significant positive effect on MP, while TL does not show a significant effect. The Sobel test to test the mediation effect shows that EMA mediated by TL has a significant positive effect on MP, while SO mediated by TL shows a negative effect. The discussion of these results emphasizes that EMA and SO can help investors in identifying market trends and momentum, thus enabling them to make better and more optimal investment decisions.

Keywords

Exponential Moving Average, Stochastic Oscillators, Maximum Investment Profitability

Article Details

How to Cite
Pratama, M. A., & Kamaludin, K. (2025). Analysis Of The Use Of Technical Indicators And Trendlines In Maximizing Stock Investment Profits In The Capital Market Indonesia. The Manager Review, 7(1), 23–30. https://doi.org/10.33369/tmr.v7i1.41291

References

  1. Kurniawan, A. W., & Puspitaningtyas, Z. (2014). Penelitian kuantitatif: Metode penelitian kuantitatif. https://repo.unikadelasalle.ac.id
  2. Ahmadi, E., Jasemi, M., Monplaisir, L., Nabavi, M. A., Mahmoodi, A., & Jam, P. A. (2018). New efficient hybrid candlestick technical analysis model for stock market timing on the basis of the support vector machine and heuristic algorithms of imperialist competition and genetic. Expert Systems with Applications, 94, 21–31. https://doi.org/10.1016/j.eswa.2017.10.023
  3. Alajbeg, D., Bubaš, Z., & Vukas, J. (2012). The effectiveness of the 50/200 dual exponential moving average crossover on the S&P 500. ASBBS eJournal, 8(1), 8–20.
  4. Ali, Z. H., & Jabr. (2022). Analysis of the trend of stock prices using the Dow Jones theory: An applied study in the Iraqi stock exchange. Journal of Administration and Economics.
  5. Anderson, S. (2022). Which indicators best complement the exponential moving average (EMA)? Investopedia. https://www.investopedia.com/ask/answers/122314/what-are-best-technical-indicators-complement-exponential-moving-average-ema.asp
  6. Anthony, & Anggono, A. H. (2019). Investment strategy based on exponential moving average and count back line. Review of Integrative Business and Economics Research, 8(4), 153–161.
  7. Antonacci, G. (2014). Dual momentum investing. Comintel.
  8. Appel, G. (2005). Technical analysis: Power tools for active investors. https://dl.acm.org
  9. Aprillianto, B., Wulandari, N., & Kurrohman, T. (2015). Perilaku investor saham individual dalam pengambilan keputusan investasi: Studi hermeneutika-kritis. e-Journal Ekonomi Bisnis dan Akuntansi, 1(1), 16–31.
  10. Arikunto, S. (2006). Dasar-dasar evaluasi. Jakarta: Bumi Aksara.
  11. Bajo, E., Croci, E., & Marinelli, N. (2020). Institutional investor networks and firm value. Journal of Business Research, 112, 65–80. https://doi.org/10.1016/j.jbusres.2020.02.041
  12. Bajzik, J. (2021). Trading volume and stock returns: A meta-analysis. International Review of Financial Analysis, 78. https://doi.org/10.1016/j.irfa.2021.101923
  13. Barber, B. M., & Odean, T. (2000). Trading is hazardous to your wealth: The common stock investment performance of individual investors. Journal of Finance, 55(2), 773–806. https://doi.org/10.1111/0022-1082.00226
  14. Barberis, N. (2018). Psychology-based models of asset prices and trading volume. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.317761
  15. Corielli, F., & Penati, A. (1996). Long-run equity risk and dynamic trading strategies: A simulation exercise for the Italian stock market. Ricerche Economiche, 50(1), 27–56. https://doi.org/10.1006/reco.1996.0002
  16. Crane, D. B. (2021). American Finance Association. Journal of Finance, 76(1), 485–486. https://doi.org/10.1111/jofi.12791
  17. Degiannakis, S., & Filis, G. (2017). Forecasting oil price realized volatility using information channels from other asset classes. Journal of International Money and Finance, 76, 28–49. https://doi.org/10.1016/j.jimonfin.2017.05.006
  18. Dočekalová, M. P., & Kocmanová, A. (2018). Comparison of sustainable environmental, social, and corporate governance value added models for investors decision making. Sustainability, 10(3). https://doi.org/10.3390/su10030649
  19. Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance.
  20. Fama, E. F., & Blume, M. E. (1966). Filter rules and stock-market trading. The Journal of Business, 39(S1), 226. https://doi.org/10.1086/294849
  21. Fisher, R., & Fisher, J. (2003). Candlesticks, Fibonacci, and chart pattern trading tools.
  22. Ghozali, I. (2005). Metode penelitian bisnis. Semarang: Bagian Penerbitan FE-UNDIP.
  23. Graham, B. (1973). The intelligent investor: The definitive book on value investing. Innovations: Technology, Governance, Globalization, 6(3), 9–18.
  24. Grebenkov, D. S., & Serror, J. (2014). Following a trend with an exponential moving average: Analytical results for a Gaussian model. Physica A, 394, 288–303. https://doi.org/10.1016/j.physa.2013.10.007
  25. Gregoriou, G. N. (2009). Stock market volatility (M. K. Ong, Ed.). CRC Press.
  26. Gujarati, D. N. (2003). Basic econometrics (Vol. 82).
  27. Hale, B. (2023). The only technical analysis. HMDpublishing.
  28. Hansun, S. (2013). A new approach of moving average method in time series analysis. In 2013 International Conference on New Media Studies (CoNMedia 2013). https://doi.org/10.1109/conmedia.2013.6708545
  29. Harford, J., Kecskés, A., & Mansi, S. (2018). Do long-term investors improve corporate decision making? Journal of Corporate Finance, 50, 424–452. https://doi.org/10.1016/j.jcorpfin.2017.09.022
  30. Harris, L. (1986). Cross-security tests of the mixture of distributions hypothesis. The Journal of Financial and Quantitative Analysis, 21(1), 39. https://doi.org/10.2307/2330989
  31. Harris, L. (1987). Transaction data tests of the mixture of distributions hypothesis. The Journal of Financial and Quantitative Analysis, 22(2), 127. https://doi.org/10.2307/2330708
  32. Hase, G. J., & Haryono, N. A. (2018). Pengujian efisiensi pasar pada pasar modal Indonesia periode Juni 2009 - Juni 2015 (Studi pada indeks harga saham gabungan). Jurnal Ilmu Manajemen (JIM), 6(4), 550–558.
  33. Hattori, T., & Yoshida, J. (2020). Bank of Japan as a contrarian stock investor: Large-scale ETF purchases. SSRN Electronic Journal.
  34. Hidayat, M. A. (2022). Analisis teknikal pergerakan harga saham dengan indikator candlestick, moving average, dan stochastic oscillator, 36–42.
  35. Umiyati, H. (2021). Populasi dan teknik sampel (Fenomena pernikahan di bawah umur masyarakat 5.0 di kota/kabupaten X). Universitas Islam Negeri Alauddin Makassar, 2–25.
  36. Irfansyah, F. F. (2020). Penerapan indikator stochastic oscillator dan metode buy and hold untuk memperoleh capital gain pada saham LQ45 di PT. FAC. https://eprints.uty.ac.id
  37. Jen, F. C. (1970). Random walks and technical theories: Some additional evidence: Discussion. The Journal of Finance, 25(2), 495. https://doi.org/10.2307/2325498
  38. Jennings, R. H., & Barry, C. B. (1983). Information dissemination and portfolio choice. The Journal of Financial and Quantitative Analysis, 18(1), 1.
  39. Jennings, R. H., Starks, L. T., & Fellingham, J. C. (1981). An equilibrium model of asset trading with sequential information arrival. The Journal of Finance, 36(1), 143.
  40. Jones, C. P. (2000). Investment analysis and management. John Wiley and Sons.
  41. Jones, T. M. (1995). Instrumental stakeholder theory: A synthesis of ethics and economics. Academy of Management Review, 20(2), 404–437. https://doi.org/10.5465/amr.1995.9507312924
  42. Kang, S. H., Jiang, Z., Lee, Y., & Yoon, S. M. (2010). Weather effects on the returns and volatility of the Shanghai stock market. Physica A: Statistical Mechanics and its Applications, 389(1), 91–99. https://doi.org/10.1016/j.physa.2009.09.010