Main Article Content

Abstract

Paddy cultivation on marginal land is the agribusiness activity. The aim of this research is to assess the feasibility status of paddy cultivation on marginal land and make efforts to optimize based on dynamic modeling system analysis. The research method used is descriptive quantitative with the dynamic modeling system analysis. The results show that the business profitability analysis shows a profit value of IDR 30,486,500, R/C Ratio 2.30, BEP unit 6,316 kg, BEP Sales IDR 15,477,220,-, and returnability 1.30%. This means this business is very profitable. The results of business financial analysis show an NPV IDR 2,536,754,052,-, profitability index 21.36%, IRR 14.21%, and payback period 14.4 years. This means this business is very worthy for development. The results of the dynamic modeling system analysis show that the paddy growth rate is influenced by using technology. Technology will influence rice growth of 3.5-7.0 cm. Nutrients influence the paddy biomass on marginal land. Using 10-20 kg/Ha of fertilizer will affect paddy biomass growth of 35-70 kg/Ha. The results of the dynamic model analysis show that the maximum paddy harvest production on marginal land is 25-50 kg/Ha/month with fertilizer use of 45-90 kg/Ha/month. This research concludes that the level of paddy cultivation feasibility on critical land is still quite feasible and profitable to develop. model analysis results show that of using agricultural technology and administering appropriate fertilizer doses will greatly determine the level of rice productivity on marginal agricultural land.

Keywords

business, fertilizer, modelling, nutrients, paddy

Article Details

How to Cite
Mushaf Al Ramadhani, F., Ariadi, H., Mufid, A., Handriatni, A., Sajuri, & Costa Ximenes, R. da. (2024). A Comprehensive Study On The Business Feasibility, And Optimization Model For Paddy Cultivation On Marginal Agricultural Land In Pekalongan District . Jurnal AGRISEP: Kajian Masalah Sosial Ekonomi Pertanian Dan Agribisnis, 23(02), 351–372. https://doi.org/10.31186/jagrisep.23.02.351-372

References

  1. Agegnehu, G., et al. (2023). Improving Fertilizer Response Of Crop Yield Through Liming And Targeting To Landscape Positions In Tropical Agricultural Soils. Heliyon, 9(1), 1-22. doi: 10.1016/j.heliyon.2023.e17421
  2. Ahmadian, I., Yustiati, A., Andriani, Y. (2021). Produktivitas Budidaya Sistem Mina Padi Untuk Meningkatkan Ketahanan Pangan Di Indonesia. Jurnal Akuatek, 2(1), 1-6. doi: 10.24198/akuatek.v2i1.33647
  3. Akinyi, D. P., et al. (2022). Cost-Benefit Analysis Of Prioritized Climate-Smart Agricultural Practices Among Smallholder Farmers: Evidence From Selected Value Chains Across Sub-Saharan Africa. Heliyon, 8(4), 1-18. doi: 10.1016/j.heliyon.2022.e09228
  4. Ariadi, H. (2023). Dinamika Wilayah Pesisir. Malang: UB Press
  5. Ariadi, H., & Abidin, Z. (2019). Study Of Partnership Pattern Among Farmers Of Tilapia Fish (Oreochromis Niloticus) And Fish Breeding Centre Klemunan In Wlingi Of Blitar Regency. ECSOFIM: Economic And Social Of Fisheries And Marine Journal, 6(2), 194-201. doi: 10.21776/ub.ecsofim.2019.006.02.07
  6. Ariadi, H., & Mujtahidah. (2022). Analisis Permodelan Dinamis Kelimpahan Bakteri Vibrio Sp. Pada Budidaya Udang Vaname (Litopenaeus vannamei). Jurnal Riset Akuakultur, 16(4), 255-262. doi: 10.15578/jra.16.4.2021.255-262
  7. Ariadi, H., & Puspitasari, M. N. (2021). Perbandingan Pola Kelayakan Ekologis Dan Finansial Usaha Pada Kegiatan Budidaya Udang Vaname (L. Vannamei). Fish Scientiae, 11(2), 125-138. doi: 10.20527/fishscientiae.v11i2.176
  8. Ariadi, H., Fadjar, M., & Mahmudi, M. (2019). Financial Feasibility Analysis Of Shrimp Vannamei (Litopenaeus Vannamei) Culture In Intensive Aquaculture System With Low Salinity. Ecsofim. Economic And Social Of Fisheries And Marine Journal, 7(1), 95-108. doi: 10.21776/ub.ecsofim.2019.007.01.08
  9. Ariadi, H., Fadjar, M., & Mahmudi, M. (2019). The Relationships Between Water Quality Parameters And The Growth Rate Of White Shrimp (Litopenaeus Vannamei) In Intensive Ponds. Aquaculture, Aquarium, Conservation & Legislation, 12(6), 2103-2116. Retrieved from https://www.proquest.com/openview/b8d3a7645900d953f12efed91637972f/1?pq-origsite=gscholar&cbl=2046424
  10. Ariadi, H., Wafi, A., & Madusari, B.D. (2021). Dinamika Oksigen Terlarut (Studi Kasus Pada Budidaya Udang). Indramayu: Penerbit ADAB
  11. Ariadi, H., et al. (2021). Financial Analysis Of Tilapia (O. Niloticus) Fry Business Activity At The Klemunan Fish Fry Center, Blitar District. Journal of Aquaculture Development and Environment, 4(1), 227-232. doi: 10.31002/jade.v4i1.3791
  12. Ariadi, H., et al. (2022). Analisa Model Causal Loop Pemanfaatan Keramba Budidaya Ikan Adaptif Dan Potensi Pengembangannya. Jurnal Perikanan Unram, 12(4), 504-512. doi: 10.29303/jp.v12i4.343
  13. Ariadi, H., Madusari, B.D., & Mardhiyana, D. (2022). Analisis Pengaruh Daya Dukung Lingkungan Budidaya Terhadap Laju Pertumbuhan Udang Vaname (L. vannamei). EnviroScienteae, 18(1), 29-37. doi: 10.20527/es.v18i1.12976
  14. Ariadi, H., et al. (2022). Fluctuation Effect Of Dissolved Of TAN (Total Ammonia Nitrogen) On Diatom Abundance In Intensive Shrimp Culture Ponds. IOP Conference Series: Earth and Environmental Science, 1118 (1), 012001. doi: 10.1088/1755-1315/1118/1/012001
  15. Ariadi, H., et al. (2022). Peluang Pengembangan Produksi Perikanan Tangkap Di Wilayah Kabupaten Tegal Dan Pekalongan Pada Masa Mendatang. AGROMIX, 13(2), 152-158. doi: 10.35891/agx.v13i2.2922
  16. Ariadi, H., et al. (2022). Plankton And Its Potential Utilization For Climate Resilient Fish Culture. AACL Bioflux, 15(4), 2041-2051. Retrieved from http://bioflux.com.ro/docs/2022.2041-2051.pdf
  17. Ariadi, H., et al. (2023). Analisis Potensi Pengembangan Budidaya Ikan Keramba Adaptif Di Wilayah Pesisir. Buletin Ilmiah Marina Sosial Ekonomi Kelautan dan Perikanan, 9(1), 27-35. doi: 10.35308/jpt.v9i2.3964
  18. Ariadi, H., Azril, M., & Mujtahidah, T. (2023). Water Quality Fluctuations In Shrimp Ponds During Dry and Rainy Seasons. Croatian Journal of Fisheries, 81(3), 127-137. doi: 10.2478/cjf-2023-0014
  19. Birthal, P. S., et al. (2022). Assessing Benefits Of Crop Insurance Vis-A-Vis Irrigation In Indian Agriculture. Food Policy, 112(1), 102348. doi: 10.1016/j.foodpol.2022.102348
  20. Cerbule, K., et al. (2023). Increasing Sustainability In Food Production By Using Alternative Bait In Snow Crab (Chionoecetes opilio) Fishery In The Barents Sea. Heliyon, 9(1), 13820. doi: 10.1016/j.heliyon.2023.e13820
  21. Chaudhary, B., & Kumar, V. (2022). Emerging Technological Frameworks For The Sustainable Agriculture And Environmental Management. Sustainable Horizons, 3(1) 10-26. doi: 10.1016/j.horiz.2022.100026
  22. Chen, L., et al. (2023). The Potential Capability Of Substituting Chemical Fertilizers With Crop Straw And Human-Livestock-Poultry Manure In Areas With Different Topographic Characteristics. Heliyon, 9(2), 18845. doi: 10.1016/j.heliyon.2023.e18845
  23. Des R. A.B., et al. (2020). Corrigendum To “Do International Commission Of Agricultural And Biosystems Engineering (CIGR) Dimension Recommendations For Loose Housing Of Cows Improve Animal Welfare?”. Journal Of Dairy Science, 103(11), 10235-10249. doi: 10.3168/jds.2020-103-2-2040
  24. Desta, G., et al. (2021). Effects Of Land Management Practices And Land Cover Types On Soil Loss And Crop Productivity In Ethiopia: A Review. International Soil And Water Conservation Research, 9(1), 544-554. doi: 10.1016/j.iswcr.2021.04.008
  25. Dinas Ketahanan Pangan dan Pertanian. (2022). Luas Panen Tanaman Sayuran dan Buah–Buahan Semusim Menurut Jenis Tanaman (ha). Pekalongan: Dinas Ketahanan Pangan dan Pertanian. Retrieved from https://www.bps.go.id/id/statistics-table/3/VTNWM01VdGhTelZTTTNSS1NFSkVZazkzWjJKcWR6MDkjMw==/luas-panen-tanaman-sayuran-dan-buahbuahan-semusim-menurut-jenis-tanaman--2022.?year=2022
  26. Edwards, W. M. (2017). How Much Is That Farm Really Worth—A Comparison Of Three Land Purchase Decision Tools. Journal of Applied Farm Economics, 1(1), 1-13. doi: 10.7771/2331-9151.1007
  27. Gandhi, P., Jannah, D. M., & Nurkaidah, D. (2023). Priority Efforts To Increase Income Of Agribusiness Companies In West Bandung, West Java, Indonesia. AGRICOLA, 13(2), 59-69. doi: 10.35724/ag.v13i2.5447
  28. Gao, M., et al. (2022). Emergy Evaluation Of Positive And Negative Benefits Of Agricultural Water Use Based On Energy Analysis Of Water Cycle. Ecological Indicators, 139(2), 108914. doi: 10.1016/j.ecolind.2022.108914
  29. Han, J., et al. (2023). Annual Paddy Rice Planting Area And Cropping Intensity Datasets And Their Dynamics In The Asian Monsoon Region From 2000 To 2020. Agricultural Systems, 103437. doi: 10.1016/j.agsy.2022.103437
  30. Hatta, M., et al. (2023). Food Self-Sufficiency: Managing The Newly-Opened Tidal Paddy Fields For Rice Farming In Indonesia (A Case Study In West Kalimantan, Indonesia). Heliyon, 9(3), 27-40. doi: 10.1016/j.heliyon.2023.e13839
  31. Hosseinpour, N., Kazemani, F., & Mahdizadeh, H. (2022). A Cost-Benefit Analysis Of Applying Urban Agriculture In Sustainable Park Design. Land Use Policy, 112(1), 105834. doi: 10.1016/j.landusepol.2021.105834
  32. Hsu, E. (2022). Cost-Benefit Analysis For Recycling Of Agricultural Wastes In Taiwan. Waste Management, 120(1), 424-432. doi: 10.1016/j.wasman.2020.09.051
  33. Huang, P., et al. (2023). Projected High-Resolution Eto Spatiotemporal Variation Under Future Climate Change And Paddy Area Expansion In The Sanjiang Plain, Northeast China. Journal Of Hydrologi Regional Studies, 50(1), 101574. doi: 10.1016/J.Ejrh.2023.101574
  34. Jing, X. W., & Zhang, M. (2023). Assessment On High-Quality Development Of Guizhou's Agricultural Economy Based On Hesitant Fuzzy Linguistic Term Sets. Procedia Computer Science, 221(1), 593-600. doi: 10.1016/j.procs.2023.08.027
  35. Junior, A. P. B., Flixkinger, D.L., Henry-Silva, G. G. (2021). Sedimentation Rates Of Nutrients And Particulate Material In Pond Mariculture Of Shrimp (Litopenaeus Vannamei) Carried Out With Different Management Strategies. Aquaculture, 534(2), 73-90. doi: 10.1016/J.Aquaculture.2020.736307
  36. Kanthilanka, H., et al. (2023). Optimal Nitrogen Fertilizer Decisions For Rice Farming In A Cascaded Tank System In Sri Lanka: An Analysis Using An Integrated Crop, Hydro-Nutrient And Economic Model. Agricultural Systems, 207(1), 1-13. doi: 10.1016/j.agsy.2023.103628
  37. Kementerian Kelautan Perikanan (KKP). (2021). Produksi Budi Daya Udang Di Indonesia. Jakarta: Kementerian Kelautan dan Perikanan. Retrieved from https://statistik.kkp.go.id/home.php?m=prod_ikan_prov
  38. Koffi, Y.P., et al. (2023). Contribution Of Landsat Imagery To Map Vulnerable Areas To Seawater Intrusion Along The Mt.-Cameroon Coastal Area Using Lineaments Pattern. Journal Of African Earth Sciences, 204(1), 2047-2060. doi: 10.1016/j.jafrearsci.2023.104937
  39. Li, T., et al. (2021). Effects Of An Ex Situ Shrimp-Rice Aquaponic System On The Water Quality Of Aquaculture Ponds In The Pearl River Estuary, China. Aquaculture, 545(1), 1-9. doi: 10.1016/j.aquaculture.2021.737179
  40. Li, X., et al. (2022). Developing An Agricultural Water Pricing Model Considering Both Physical And Virtual Water: A Case Study Of An Irrigation District In China. Journal Of Cleaner Production, 368(1), 133043. doi: 10.1016/j.jclepro.2022.133043
  41. Li, X., et al. (2023). Formulation, Performance And Environmental/Agricultural Benefit Analysis Of Biomass-Based Biodegradable Mulch Films: A Review. European Polymer Journal, 203(1), 112663. doi: 10.1016/j.eurpolymj.2023.112663
  42. Liu, B., et al. (2022). Quantifying The Effects Of Advection On Single Crop Coefficients Over A Humid Paddy Field For Sustainable Irrigation. Journal Of Hydrology, 614(9), 128552. doi: 10.1016/j.jhydrol.2022.128552
  43. Madusari, B.D., Ariadi, H., & Mardhiyana, D. (2022). Effect Of The Feeding Rate Practice On The White Shrimp (Litopenaeus vannamei) Cultivation Activities. Aquaculture, Aquarium, Conservation & Legislation-International Journal Of The Bioflux Society, 15(1), 473-479. Retrieved from https://repository.unikal.ac.id/315/
  44. Maomao, H., et al. (2023). Long-Term Fermented Organic Fertilizer Application Reduce Urea Nitrogen-15 Loss From Plastic Shed Agricultural Soils. Annals Of Agricultural Sciences, 68(2), 108-117. doi: 10.1016/j.aoas.2023.11.002
  45. Mardiana, T. Y., et al. (2023). Estimation Of Water Carrying Capacity For Floating Net Cage Cultivation Activities In Pekalongan Coastal Waters. Jurnal Perikanan Universitas Gadjah Mada, 25(1), 19-24. doi: 10.22146/jfs.80968
  46. Muqsith, A., et al. (2020). The Estimation of Loading Feed Nutrient Waste from Vannamei Shrimp Aquaculture Pond and Carrying Capacity of Coastal Area in Banyuputih Sub-District Situbondo Regency. AIP Conf. Procedia, 2120(1), 1-6. doi :10.1063/1.5115675
  47. Naseri, F., Azari, M., & Dastorani, M.T. (2021). Spatial Optimization Of Soil And Water Conservation Practices Using Coupled SWAT Model And Evolutionary Algorithm. International Soil And Water Conservation Research, 9(4), 566-577. doi: 10.1016/j.iswcr.2021.04.002
  48. Newman. (2022). Shrimp Farming Yesterday To Tomorrow. Reference Module In Food Science, 1-15. Retrieved from https://www.ipcc.ch/srccl/chapter/chapter-5/
  49. Nguyen, M. T., et al. (2023). Integrated Mariculture Of Co-Cultured Whiteleg Shrimp (Litopenaeus vannamei) And Grey Mullet (Mugil Cephalus) In Sequence With Red Tilapia (Oreochromis spp.) In A Closed Biofloc-Based System. Aquaculture, 566(3), 739200. doi: 10.1016/j.aquaculture.2022.739200
  50. Niu, G. J., et al. (2022). Infection With White Spot Syndrome Virus Affects The Microbiota In The Stomachs And Intestines Of Kuruma Shrimp. Science Of The Total Environment 839(1), 15-33. doi: 10.1016/j.scitotenv.2022.156233
  51. Nunes, A. J. P., & Masagounder, K. (2022). Optimal Levels Of Fish Meal And Methionine In Diets For Juvenile Litopenaeus vannamei To Support Maximum Growth Performance With Economic Efficiency. Animals, 13(1), 1-20. doi: 10.3390/ani13010020
  52. Oktania, A., Suyono., & Sutanto, A. (2021). Analisis Kelayakan Usahatani Padi Sawah Apung Pada Lahan Sawah Rawan Banjir Di Kabupaten Banyumas. Jurnal Ekonomi Pertanian Dan Agribisnis, 5(3), 762-775. doi: 10.21776/ub.jepa.2021.005.03.14
  53. Osawa, T., Shirozu, H., & Arini, D. P. (2023). Impact Of Sea-Level Rise On Shrimp Farming: Case Study In East Java, Indonesia. Coastal Altimetry, 1(1), 89-107. doi: 10.1016/B978-0-323-91708-7.00012-2
  54. Outram, F. N., et al. (2016). Antecedent Conditions, Hydrological Connectivity And Anthropogenic Inputs: Factors Affecting Nitrate And Phosphorus Transfers To Agricultural Headwater Streams. Science Of The Total Environment, 545(1), 184-199.doi:10.1016/j.scitotenv.2015.12.025
  55. Pandya, D., Vachharajani, B., & Srivastava, R. (2022). A Review Of Data Assimilation Techniques: Applications In Engineering And Agriculture. Materials Today: Proceeding (pp.7048-7052). doi: 10.1016/j.matpr.2022.01.122
  56. Patiung, M. (2021). Analysis Of Feasibility Of Development Of Agropolitan Area Probolinggo District. Agricultural Socio-Economics Journal, 21(2), 79-86. doi: 10.21776/ub.agrise.2021.021.2.1
  57. Permatasari, M. N., & Ariadi, H. (2021). Studi Analisis Kelayakan Finansial Usaha Budidaya Udang Vaname (L. vannamei) Di Tambak Pesisir Kota Pekalongan. AKULTURASI: Jurnal Ilmiah Agrobisnis Perikanan, 9(2), 284-290. doi: 10.35800/akulturasi.v9i2.36923
  58. Pueyo R. J., et al. (2024). Beyond Food: A Stochastic Model To Estimate The Contributions Of Urban Agriculture To Sustainability. Landscape And Urban Planning, 241(1), 1-11. doi: 10.1016/j.landurbplan.2023.104930
  59. Ramesh, P., et al. (2023). Environmental Impacts And Effects On Greenhouse Gas Emissions In Shrimp Feed Production System For Aquaculture – A Case Study In India. Environmental Research, 241(1), 11-34. doi: 10.1016/j.envres.2023.117348
  60. Satanwat, P., et al. (2023). Sustainable Practice For A Zero-Discharge Outdoor Earthen Shrimp Pond Based On Biological Nitrogen Waste Carrying Capacity. Aquaculture, 574(1), 22-34. doi: 10.1016/j.aquaculture.2023.739734
  61. Sawatraksa, N., et al. (2023). Crop Model Determined Mega-Environments For Cassava Yield Trials On Paddy Fields Following Rice. Heliyon, 9(3), 18-30. doi: 10.1016/j.heliyon.2023.e14201
  62. Setyawan, P., et al. (2022). Current Status, Trends, And Future Prospects For Combining Salinity Tolerant Tilapia And Shrimp Farming In Indonesia. Aquaculture, 561(4), 738658. doi: 10.1016/j.aquaculture.2022.738658
  63. Shi, W., & Huang, M. (2021). Predictions Of Soil And Nutrient Losses Using A Modified SWAT Model In A Large Hilly-Gully Watershed Of The Chinese Loess Plateau. International Soil And Water Conservation Research, 9(1), 291-304. doi: 10.1016/j.iswcr.2020.12.002
  64. Sinha, S. (2022). From Cotton To Paddy: Political Crops In The Indian Punjab. Geoforum, 130(1), 146-154. doi: 10.1016/j.geoforum.2021.05.017
  65. Song, M., et al. (2023). Toward Better Agricultural Grey Water Footprint Allocation Under Economy-Resource Factors Constraint. Ecological Indicators, 154(1), 1-14. doi: 10.1016/j.ecolind.2023.110806
  66. Sulistyanto, G. D., Kusrini, N., Mswadi. (2013). Analisis Kelayakan Usahatani Tanaman Padi Di Kecamatan Sebangki Kabupaten Landak. Jurnal Pertanian, 2(3), 1-10. doi: 10.26418/jspe.v2i3.3503
  67. Tolinggi, W., et al. (2018). Economic Feasibility Analysis Of Agribusiness Sub Terminal In Integrated Agricultural Program Area. Jurnal Perspektif Pembiayaan Dan Pembangunan Daerah, 5(3), 173-180. doi: 10.22437/ppd.v5i3.4501
  68. Wafi, A., et al. (2020). Model Simulasi Panen Parsial Pada Pengelolaan Budidaya Intensif Udang Vannamei (Litopenaeus vannamei). Samakia: Jurnal Ilmu Perikanan, 11(2), 118-126. doi: 10.35316/jsapi.v11i2.928
  69. Wafi, A., et al. (2021). Oxygen Consumption Of Litopenaeus vannamei In Intensive Ponds Based On The Dynamic Modeling System. Journal Of Aquaculture And Fish Health, 10(1), 17-24. doi: 10.20473/jafh.v10i1.18102
  70. Waha, K., et al. (2022). The Benefits And Trade-Offs Of Agricultural Diversity For Food Security In Low- And Middle-Income Countries: A Review Of Existing Knowledge And Evidence. Global Food Security, 33(1), 10-24. doi: 10.1016/j.gfs.2022.100645
  71. Wang, W., et al. (2022). A System Dynamics Model Analysis For Policy Impacts On Green Agriculture Development: A Case Of The Sichuan Tibetan Area. Journal Of Cleaner Production, 371(1), 1-60. doi: 10.1016/j.jclepro.2022.133562
  72. Wang, L., Zang, X., & Zhou, J. (2022). Synthetic Biology: A Powerful Booster For Future Agriculture. Advanced Agrochem, 1(1), 7-11. doi: 10.1016/j.aac.2022.08.005
  73. Yadav, G. S., et al. (2021). Potential Of Conservation Tillage And Altered Land Configuration To Improve Soil Properties, Carbon Sequestration And Productivity Of Maize Based Cropping System In Eastern Himalayas, India. International Soil And Water Conservation Research, 9(1), 279-290. doi: 10.1016/j.iswcr.2020.12.003
  74. Zhang, H., et al. (2021). Distribution And Determinants Of Organic Carbon And Available Nutrients In Tropical Paddy Soils Revealed By High–Resolution Sampling. Agriculture, Ecosystems & Environment, 320(1), 1-10. doi: 10.1016/j.agee.2021.107580
  75. Zou, X. X., et al. (2021). Rotational Strip Intercropping Of Maize And Peanuts Has Multiple Benefits For Agricultural Production In The Northern Agropastoral Ecotone Region Of China. European Journal Of Agronomy, 129(1), 1-12. doi: 10.1016/j.eja.2021.12630