Main Article Content
Abstract
Fluctuations in agricultural food prices, particularly for animal proteins like beef, have profound implications for Yogyakarta beef market, imposing significant budgetary constraints on consumers, disrupting market equilibrium, and creating uncertainty for farmers. Understanding the drivers of cyclical price dynamics is critical for effective policy intervention and market regulation to mitigate these challenges. Therefore, this study specifically investigates determinants of cyclical beef price behavior in Yogyakarta, Indonesia. Utilizing time series data from 1989 to 2018, a two-stage least squares (2SLS) approach in natural logarithm form is employed to identify the factors influencing beef demand and supply. The 2SLS method was chosen to address potential simultaneity bias arising from the interdependence of beef price and quantity, ensuring more accurate estimation of the relationships between these variables. Log-log regression model is then employed to determine market equilibrium based on Cobweb Model. Although the Cobweb Model simplifies price expectations and market complexities, its focus on cyclical dynamics and data accessibility makes it suitable for analysing cyclical price patterns in the beef market. The results revealed that beef demand is significantly influenced by price (0.203%) and per capita income (0.485%) , while supply is driven by price (0.075%), cattle population growth (0.403%), and slaughter numbers (0.425%). The findings indicated a convergent fluctuation pattern, with demand elasticity exceeding supply elasticity (0.471 > 0.343). This research contributed to understanding of price dynamics and market equilibrium in the context of local beef market, demonstrating the applicability of the Cobweb Model in explaining cyclical adjustments in price and quantity.
Keywords
Article Details
Copyright (c) 2025 Agung Triatmojo, Mujtahidah Anggriani Ummul Muzayyanah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree with the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Agustiar, R., et al. (2023a). Beef Supply Chain of Imported Cattle From Traditional Markets to Modern Retail Markets, in 3rd International Conference on Smart and Innovative Agriculture, 1(1), 90–99. doi: 10.2991/978-94-6463-122-7_9
- Agustiar, R., et al. (2023b). Industrial Analysis of Cattle Feedlot Companies in Indonesia. IOP Conference Series: Earth and Environmental Science, 1241(1),1–9. doi: 10.1088/1755-1315/1241/1/012041
- Ahmed, H., Aslam, F., & Ferreira, P. (2024). Navigating Choppy Waters: Interplay Between Financial Stress and Commodity Market Indices. Fractal and Fractional, 8(2), 96–119. doi: 10.3390/fractalfract8020096
- Alpuim, T., & El-Shaarawi, A. (2008). On The Efficiency of Regression Analysis With AR(P) Errors. Journal of Applied Statistics, 35(7), 717–737. doi; 10.1080/02664760600679775
- Ani, S. W., & Antriyandarti, E. (2019). Analysis of Household Demand for Chicken Meat in Yogyakarta. IOP Conference Series: Earth and Environmental Science, 347(1), 1-7. doi: 10.1088/1755-1315/347/1/012119
- Antara, M., & Sumarniash, M. S. (2019). Behind The Volatility of Beef Price in Indonesia. Economy, 6(1), 1–6. doi: 10.20448/journal. 502.2019.61.1.6
- Astiti, N. M. A. G. R., Wedaningsih, K. N., & Parwata, I. K. W. (2023). Potential Demand and Supply of Beef Cattle in Indonesia. Eximia, 11(1), 24–32. doi: 10.47577/eximia.v11i1.274
- Baye, M. (2010). Managerial Economics and Business Strategy (7th ed.). New York: McGraw-Hill
- Berardi, M. (2022). Beliefs Asymmetry and Price Stability in A Cobweb Model. Journal of Economic Behavior & Organization, 203(1), 401–415. doi: 10.1016/j.jebo.2022.09.017
- Bijmolt, T. H. A., Van Heerde, H. J., & Pieters, R. G. M. (2005). New Empirical Generalizations on The Determinants of Price Elasticity. Journal of Marketing Research, 42(2), 141–156. doi: 10.1509/ jmkr.42.2.141.62296
- Boediono. (2011). Micro Economics (2nd ed.). Yogyakarta: BPFE
- Brouwer, F., & McCarl, B. A. (2006). Agriculture and Climate Beyond Netherlands: Springer
- Bunning, H., & Wall, E. (2022). The Effects of Weather on Beef Carcass and Growth Traits. Animal, 16(11), 1–7. doi: 10.1016/j.animal.2022.100657
- Center for Domestic Trade Policy. (2013). Analysis of The Factors That Affect the Retail Price of Beef Domestic. Retrieved from https://bkperdag.kemendag.go.id/pengkajian/download_analisis?token=57e88cea9a8b662980afb4d3749343244383c4b21cfde85581cc3b0cf5883327&file=eyJpZCI6IjNhc09WS1BWMHdObk5BVWY0b1hTY1E9PSIsImRhdGEiOiJmS1E0In0%3D
- Central Bureau of Statistics. (2024). Statistics Based on Subject. Retrieved from https://www.bps.go.id/id/statistics-table?subject=557
- Central Bureau of Statistics Yogyakarta. (2024). Beef Production Based on Province. Retrieved from https://www.bps.go.id/id/statistics-table/2/NDgwIzI=/produksi-daging-sapi-menurut-provinsi.html
- Charlebois, S., McCormick, M., & Juhasz, M. (2016). Meat Consumption and Higher Prices. British Food Journal, 118(9), 2251–2270. doi: 10.1108/BFJ-03-2016-0121
- Chiaie, S. D., Ferrara, L., & Giannone, D. (2022). Common Factors of Commodity Prices. Journal of Applied Econometrics, 37(3), 461–476. doi: 10.1002/jae.2887
- Deaton, A., & Laroque, G. (2003). A Model of Commodity Prices After Sir Arthur Lewis. Journal of Development Economics, 71(2), 289–310. doi: 10.1016/S0304-3878(03)00030-0
- Fu, J., Shen, R., & Huang, C. (2023). How Does Price Insurance Alleviate The Fluctuation of Agricultural Product Market? A Dynamic Analysis Based on Cobweb Model. Agricultural Economics (Zemědělská Ekonomika), 69(5), 202–211. doi: 10.17221/107/2023-AGRICECON
- Gao, D. (2022). Analysis of 3D Cobweb Economic differential Dynamic System Based on Supply-Demand and Price Relationships. discrete Dynamics in Nature and Society, 2022(1), 1–10. doi: 10.1155/ 2022/2742485
- Gori, L., Guerrini, L., & Sodini, M. (2015). Equilibrium and disequilibrium Dynamics in Cobweb Models With Time Delays. International Journal of Bifurcation and Chaos, 25(06), 1-17. doi: 10.1142/S0218127415500881
- Gudisa, L. (2021). Effects of Supply Determinants on Supply Performance of Slaughter Animal for Meat Export Abattoirs in Ethiopia. Business and Management Studies, 7(4), 1–10. doi: 10.11114/ bms.v7i4.5378
- Hadi, P. U., et al. (2002). Improving Indonesia’s Beef Industry. ACIAR Monograph Series. Canberra: Australian Centre for International Agricultural Research
- Han, X., et al. (2016). Overview of The Beef Cattle Industry in China: The Widening Deficit Between Demand and Output in A Vicious Circle. Journal of Fisheries & Livestock Production, 4(3), 1–6. doi: 10.4172/2332-2608.1000190
- Han, X., et al. (2023). How to Understand High Global Food Price? Using SHAP to Interpret Machine Learning Algorithm. PLOS ONE, 18(8), 1-20. doi: 10.1371/ journal.pone.0290120
- Hazra, A., & Gogtay, N. (2017). Biostatistics Series Module 10: Brief Overview of Multivariate Methods. Indian Journal of Dermatology, 62(4), 358–366. doi: 10.4103/ijd.IJD_296_17
- Houser, M., & Karali, B. (2020). How Scary Are Food Scares? Evidence From Animal disease Outbreaks. Applied Economic Perspectives and Policy, 42(2), 283–306. doi: 10.1002/aepp.13001
- Khairullina, O. (2018). Production and Consumption of Beef: Aspects of Russian Federation National Food Security. HELIX, 8(4), 3528–3534. doi: 10.29042/2018-3528-3534
- Kibona, C. A., Yuejie, Z., & Tian, L. (2022). Factors That Influence Beef Meat Production in Tanzania. A Cobb-Douglas Production Function Estimation Approach. PLOS ONE, 17(8), 1-22. doi: 10.1371/journal.pone.0272812
- Komalawati, K., et al. (2019). Modeling Price Volatility and Supply Response of Beef in Indonesia. Tropical Animal Science Journal, 42(2), 159–166. doi: 10.5398/tasj.2019.42.2.159
- Kusumaningrum, R., Suryana, A. T., & Hanoum, F. C. (2021). The Effect of Changes in Beef Prices on Beef Supply and Demand In Indonesia. Enrichment: Journal of Management, 12(1), 374–384. doi: 10.35335/enrichment.v12i1.216
- Lagi, M., et al. (2015). Accurate Market Price formation Model With Both Supply-Demand and Trend-Following for Global Food Prices Providing Policy Recommendations. Proceedings of The National Academy of Sciences, 112(45), 6119–6128. doi: 10.1073/pnas.1413108112
- Lipieta, A., & Ćwięczek, I. (2022). Mechanisms Leading to Equilibrium in Economy With Financial Market. International Journal of Finance & Economics, 27(4), 4166–4182. doi: 10.1002/ijfe.2365
- Marwanti, M., et al. (2020). Mapping and Preservation of Traditional Cuisines: A Case Study From Yogyakarta-Indonesia. Ottoman Journal of tourism and Management Research, 3(3), 732–750. doi: 10.26465/ojtmr.2018339539
- Mella, P. (2018). The Law of Increasing Productivity. International Journal of Markets and Business Systems, 3(4), 297–316. doi: 10.1504/IJMABS.2018.10019168
- Mesinger, D., & Ocieczek, A. (2020). Consumer Education As An Important Condition for Increasing Wild Animal Meat Consumption in The Context of Promoting The Idea of Sustainable Development in Poland. Polish Journal of Environmental Studies, 29(5), 3485–3492. doi: 10.15244/pjoes/117760
- Muzayyanah, M. A. U., & Dewi, N. H. U. (2019). Determinants of Household Beef Consumption in Indonesia: A Binary Logistic Analysis. IOP Conference Series: Earth and Environmental Science, 387(012107), 1–4. doi: 10.1088/1755-1315/387/1/012107
- Muzayyanah, M. A. U., et al. (2017). Household Decision Analysis on Animal Protein Food Consumption: Evidence From D.I Yogyakarta Province. Buletin Peternakan, 41(2), 203-220. doi: 10.21059/buletinpeternak.v41i2.18062
- Muzayyanah, M. A. U., Triatmojo, A., & Qui, N. H. Q. H. (2023). Measuring Consumer Involvement and Product Attributes on Beef Consumer Segmentation. Caraka Tani: Journal of Sustainable Agriculture, 38(1), 204–214. doi: 10.20961/carakatani.v38i1.67843
- Naimzada, A., Pecora, N., & Tramontana, F. (2019). A Cobweb Model With Elements From Prospect Theory. Journal of Evolutionary Economics, 29(2), 763–778. doi: 10.1007/s00191-018-0595-z
- Nugroho, F. A., & Putri, A. R. A. (2023). The Overview of Culinary tourism in Yogyakarta City From The Perspective of Experiential Value. International Journal on Recent Trends in Business and tourism, 7(1), 18–33. Doi: 10.31674/ijrtbt.2023.v07i01.002
- Nurtini, S., Baliarti, E., & Maulana, V. (2018). Factors Affecting Cattle Prices During Year-End Holiday Season. Proceedings of The International Conference on Food, Agriculture and Natural Resources, 229–232. doi: 10.2991/fanres-18.2018.47
- Poitras, G. (2023). Cobweb Theory, Market Stability, and Price Expectations. Journal of The History of Economic Thought, 45(1), 137–161. doi: 10.1017/S1053837222000116
- Policonomics. (2017). Perfect Competition II: Cobweb Model. Retrieved from https://policonomics.com/lp-perfect-competition2-cobweb-model/
- Puspitaningrum, D. A., Masyhuri, M., Hartono, S., & Jamhari, J. (2018). Study of Beef Availability Potential in Yogyakarta Special Province (DIY) through Multi Criteria Analysis (MCA) Model by Spatial Geographic Information System. Agritech, 38(1), 71–78. doi: 10.22146/agritech.28888
- Rusdiana, S., et al. (2018). The Effort of Beef Needs Supplying for Coming Years in Indonesia. The International Journal of Tropical Veterinary and Biomedical Research, 3(1), 48–59. doi: 10.21157/ijtvbr.v3i1.11364
- Said, S. (2020). Integrated Livestock Business and Industry in Indonesia. IOP Conference Series: Earth and Environmental Science, 465(012003), 1–6. doi: 10.1088/1755-1315/465/1/012003
- Salsabila, D. T., Sambodo, H., & Suharno, S. (2023). Demand Analysis of Marine Fish in South Cilacap Sub-district: A Linear Approximate Almost Ideal Demand System (LA AIDS) Model Approach. Jurnal AGRISEP: Kajian Masalah Sosial Ekonomi Pertanian Dan Agribisnis, 22(1), 195–206. doi: 10.31186/jagrisep.22.01.195-206
- Smeral, E. (2017). tourism forecasting Performance Considering The Instability of Demand Elasticities. Journal of Travel Research, 56(7), 913–926. doi: 10.1177/0047287 516671435
- Soedjana, T. D. (2016). Penawaran, Permintaan Dan Konsumsi Produk Peternakan di Indonesia. Forum Penelitian Agro Ekonomi, 15(1–2), 17–34. doi: 10.21082/fae.v15n1-2.1997.17-34
- Soler, L.-G., & Thomas, A. (2020). Is There A Win–Win Scenario With Increased Beef Quality and Reduced Consumption? Review of Agricultural, Food and Environmental Studies, 101(1), 91–116. doi: 10.1007/s41130-020-00116-w
- Sun, F., et al. (2023). Agricultural Product Price forecasting Methods: A Review. Agriculture, 13(9), 1–20. doi: 10.3390/agriculture13091671
- Tenriawaru, N., et al. (2022). Autoregressive Integrated Moving Average for Cocoa Production in Sulawesi Island 2021-2030. Jurnal AGRISEP: Kajian Masalah Sosial Ekonomi Pertanian Dan Agribisnis, 21(2), 425–436. doi: 10.31186/jagrisep.21.2.425-436
- Tian, Q., Hilton, D., & Becker, M. (2016). Confronting The Meat Paradox in different Cultural Contexts: Reactions Among Chinese and French Participants. Appetite, 96(1), 187–194. doi: 10.1016/ j.appet.2015.09.009
- Triatmojo, A., Muzayyanah, M. A. U., & Guntoro, B. (2023). Spatial Prices of Livestock Meat Products in Indonesia: Transmission and disparity Analysis. AIP Conference Proceedings, 2628(1), 1–9. doi: 10.1063/5.0144017
- Triatmojo, A., et al. (2024). Technological Acceptance of Cattle Farmers in Mobile Applications for Livestock digital Marketing. Buletin Peternakan, 48(2), 153-168. doi: 10.21059/buletinpeternak.v48i2.92075
- Tuaç, Y., Güney, Y., & Arslan, O. (2020). Parameter Estimation of Regression Model With AR(P) Error Terms Based on Skew distributions With EM Algorithm. Soft Computing, 24(5), 3309–3330. doi: 10.1007/s00500-019-04089-x
- Utami, N., Prayuginingsih, H., & Aulia, A. N. (2019). Analysis of Demand for Beef district of Jember. Jurnal Agribest, 3(2), 125-138. doi: 10.32528/agribest.v3i2.2572
- Vashishtha, A. (2020). Cobweb Price Dynamics Under The Presence of Agricultural Futures Market: Theoretical Analysis. International Review of Economics, 67(2), 131–162. doi: 10.1007/s12232-019-00335-8
- Widarjono, A. (2007). Econometrics: Theory and Application to Economics and Business (2nd ed.). Yogyakarta: Ekonisia FE Islamic University of Indonesia
- Widiati, R. (2015). Developing Beef Cattle Industry At Smallholders to Support Beef Self-Sufficiency. Indonesian Bulletin of Animal and Veterinary Sciences, 24(4), 191–200. doi: 10.14334/wartazoa.v24i4.1090
- Wijaya, T., et al. (2021). Qualitative Study of Yogyakarta Palace Culinary Gastronomic tourism. Global Journal of Business, Economics and Management, 11(1), 58–68. doi: 10.18844/gjbem.v11i1.5115
- Zaremba, Ł. (2018). Cobweb Theorem in Relation to The Fruit Market. Annals of The Polish Association of Agricultural and Agribusiness Economists, 20(3), 190–195. doi: 10.5604/01.3001.0012.1516
References
Agustiar, R., et al. (2023a). Beef Supply Chain of Imported Cattle From Traditional Markets to Modern Retail Markets, in 3rd International Conference on Smart and Innovative Agriculture, 1(1), 90–99. doi: 10.2991/978-94-6463-122-7_9
Agustiar, R., et al. (2023b). Industrial Analysis of Cattle Feedlot Companies in Indonesia. IOP Conference Series: Earth and Environmental Science, 1241(1),1–9. doi: 10.1088/1755-1315/1241/1/012041
Ahmed, H., Aslam, F., & Ferreira, P. (2024). Navigating Choppy Waters: Interplay Between Financial Stress and Commodity Market Indices. Fractal and Fractional, 8(2), 96–119. doi: 10.3390/fractalfract8020096
Alpuim, T., & El-Shaarawi, A. (2008). On The Efficiency of Regression Analysis With AR(P) Errors. Journal of Applied Statistics, 35(7), 717–737. doi; 10.1080/02664760600679775
Ani, S. W., & Antriyandarti, E. (2019). Analysis of Household Demand for Chicken Meat in Yogyakarta. IOP Conference Series: Earth and Environmental Science, 347(1), 1-7. doi: 10.1088/1755-1315/347/1/012119
Antara, M., & Sumarniash, M. S. (2019). Behind The Volatility of Beef Price in Indonesia. Economy, 6(1), 1–6. doi: 10.20448/journal. 502.2019.61.1.6
Astiti, N. M. A. G. R., Wedaningsih, K. N., & Parwata, I. K. W. (2023). Potential Demand and Supply of Beef Cattle in Indonesia. Eximia, 11(1), 24–32. doi: 10.47577/eximia.v11i1.274
Baye, M. (2010). Managerial Economics and Business Strategy (7th ed.). New York: McGraw-Hill
Berardi, M. (2022). Beliefs Asymmetry and Price Stability in A Cobweb Model. Journal of Economic Behavior & Organization, 203(1), 401–415. doi: 10.1016/j.jebo.2022.09.017
Bijmolt, T. H. A., Van Heerde, H. J., & Pieters, R. G. M. (2005). New Empirical Generalizations on The Determinants of Price Elasticity. Journal of Marketing Research, 42(2), 141–156. doi: 10.1509/ jmkr.42.2.141.62296
Boediono. (2011). Micro Economics (2nd ed.). Yogyakarta: BPFE
Brouwer, F., & McCarl, B. A. (2006). Agriculture and Climate Beyond Netherlands: Springer
Bunning, H., & Wall, E. (2022). The Effects of Weather on Beef Carcass and Growth Traits. Animal, 16(11), 1–7. doi: 10.1016/j.animal.2022.100657
Center for Domestic Trade Policy. (2013). Analysis of The Factors That Affect the Retail Price of Beef Domestic. Retrieved from https://bkperdag.kemendag.go.id/pengkajian/download_analisis?token=57e88cea9a8b662980afb4d3749343244383c4b21cfde85581cc3b0cf5883327&file=eyJpZCI6IjNhc09WS1BWMHdObk5BVWY0b1hTY1E9PSIsImRhdGEiOiJmS1E0In0%3D
Central Bureau of Statistics. (2024). Statistics Based on Subject. Retrieved from https://www.bps.go.id/id/statistics-table?subject=557
Central Bureau of Statistics Yogyakarta. (2024). Beef Production Based on Province. Retrieved from https://www.bps.go.id/id/statistics-table/2/NDgwIzI=/produksi-daging-sapi-menurut-provinsi.html
Charlebois, S., McCormick, M., & Juhasz, M. (2016). Meat Consumption and Higher Prices. British Food Journal, 118(9), 2251–2270. doi: 10.1108/BFJ-03-2016-0121
Chiaie, S. D., Ferrara, L., & Giannone, D. (2022). Common Factors of Commodity Prices. Journal of Applied Econometrics, 37(3), 461–476. doi: 10.1002/jae.2887
Deaton, A., & Laroque, G. (2003). A Model of Commodity Prices After Sir Arthur Lewis. Journal of Development Economics, 71(2), 289–310. doi: 10.1016/S0304-3878(03)00030-0
Fu, J., Shen, R., & Huang, C. (2023). How Does Price Insurance Alleviate The Fluctuation of Agricultural Product Market? A Dynamic Analysis Based on Cobweb Model. Agricultural Economics (Zemědělská Ekonomika), 69(5), 202–211. doi: 10.17221/107/2023-AGRICECON
Gao, D. (2022). Analysis of 3D Cobweb Economic differential Dynamic System Based on Supply-Demand and Price Relationships. discrete Dynamics in Nature and Society, 2022(1), 1–10. doi: 10.1155/ 2022/2742485
Gori, L., Guerrini, L., & Sodini, M. (2015). Equilibrium and disequilibrium Dynamics in Cobweb Models With Time Delays. International Journal of Bifurcation and Chaos, 25(06), 1-17. doi: 10.1142/S0218127415500881
Gudisa, L. (2021). Effects of Supply Determinants on Supply Performance of Slaughter Animal for Meat Export Abattoirs in Ethiopia. Business and Management Studies, 7(4), 1–10. doi: 10.11114/ bms.v7i4.5378
Hadi, P. U., et al. (2002). Improving Indonesia’s Beef Industry. ACIAR Monograph Series. Canberra: Australian Centre for International Agricultural Research
Han, X., et al. (2016). Overview of The Beef Cattle Industry in China: The Widening Deficit Between Demand and Output in A Vicious Circle. Journal of Fisheries & Livestock Production, 4(3), 1–6. doi: 10.4172/2332-2608.1000190
Han, X., et al. (2023). How to Understand High Global Food Price? Using SHAP to Interpret Machine Learning Algorithm. PLOS ONE, 18(8), 1-20. doi: 10.1371/ journal.pone.0290120
Hazra, A., & Gogtay, N. (2017). Biostatistics Series Module 10: Brief Overview of Multivariate Methods. Indian Journal of Dermatology, 62(4), 358–366. doi: 10.4103/ijd.IJD_296_17
Houser, M., & Karali, B. (2020). How Scary Are Food Scares? Evidence From Animal disease Outbreaks. Applied Economic Perspectives and Policy, 42(2), 283–306. doi: 10.1002/aepp.13001
Khairullina, O. (2018). Production and Consumption of Beef: Aspects of Russian Federation National Food Security. HELIX, 8(4), 3528–3534. doi: 10.29042/2018-3528-3534
Kibona, C. A., Yuejie, Z., & Tian, L. (2022). Factors That Influence Beef Meat Production in Tanzania. A Cobb-Douglas Production Function Estimation Approach. PLOS ONE, 17(8), 1-22. doi: 10.1371/journal.pone.0272812
Komalawati, K., et al. (2019). Modeling Price Volatility and Supply Response of Beef in Indonesia. Tropical Animal Science Journal, 42(2), 159–166. doi: 10.5398/tasj.2019.42.2.159
Kusumaningrum, R., Suryana, A. T., & Hanoum, F. C. (2021). The Effect of Changes in Beef Prices on Beef Supply and Demand In Indonesia. Enrichment: Journal of Management, 12(1), 374–384. doi: 10.35335/enrichment.v12i1.216
Lagi, M., et al. (2015). Accurate Market Price formation Model With Both Supply-Demand and Trend-Following for Global Food Prices Providing Policy Recommendations. Proceedings of The National Academy of Sciences, 112(45), 6119–6128. doi: 10.1073/pnas.1413108112
Lipieta, A., & Ćwięczek, I. (2022). Mechanisms Leading to Equilibrium in Economy With Financial Market. International Journal of Finance & Economics, 27(4), 4166–4182. doi: 10.1002/ijfe.2365
Marwanti, M., et al. (2020). Mapping and Preservation of Traditional Cuisines: A Case Study From Yogyakarta-Indonesia. Ottoman Journal of tourism and Management Research, 3(3), 732–750. doi: 10.26465/ojtmr.2018339539
Mella, P. (2018). The Law of Increasing Productivity. International Journal of Markets and Business Systems, 3(4), 297–316. doi: 10.1504/IJMABS.2018.10019168
Mesinger, D., & Ocieczek, A. (2020). Consumer Education As An Important Condition for Increasing Wild Animal Meat Consumption in The Context of Promoting The Idea of Sustainable Development in Poland. Polish Journal of Environmental Studies, 29(5), 3485–3492. doi: 10.15244/pjoes/117760
Muzayyanah, M. A. U., & Dewi, N. H. U. (2019). Determinants of Household Beef Consumption in Indonesia: A Binary Logistic Analysis. IOP Conference Series: Earth and Environmental Science, 387(012107), 1–4. doi: 10.1088/1755-1315/387/1/012107
Muzayyanah, M. A. U., et al. (2017). Household Decision Analysis on Animal Protein Food Consumption: Evidence From D.I Yogyakarta Province. Buletin Peternakan, 41(2), 203-220. doi: 10.21059/buletinpeternak.v41i2.18062
Muzayyanah, M. A. U., Triatmojo, A., & Qui, N. H. Q. H. (2023). Measuring Consumer Involvement and Product Attributes on Beef Consumer Segmentation. Caraka Tani: Journal of Sustainable Agriculture, 38(1), 204–214. doi: 10.20961/carakatani.v38i1.67843
Naimzada, A., Pecora, N., & Tramontana, F. (2019). A Cobweb Model With Elements From Prospect Theory. Journal of Evolutionary Economics, 29(2), 763–778. doi: 10.1007/s00191-018-0595-z
Nugroho, F. A., & Putri, A. R. A. (2023). The Overview of Culinary tourism in Yogyakarta City From The Perspective of Experiential Value. International Journal on Recent Trends in Business and tourism, 7(1), 18–33. Doi: 10.31674/ijrtbt.2023.v07i01.002
Nurtini, S., Baliarti, E., & Maulana, V. (2018). Factors Affecting Cattle Prices During Year-End Holiday Season. Proceedings of The International Conference on Food, Agriculture and Natural Resources, 229–232. doi: 10.2991/fanres-18.2018.47
Poitras, G. (2023). Cobweb Theory, Market Stability, and Price Expectations. Journal of The History of Economic Thought, 45(1), 137–161. doi: 10.1017/S1053837222000116
Policonomics. (2017). Perfect Competition II: Cobweb Model. Retrieved from https://policonomics.com/lp-perfect-competition2-cobweb-model/
Puspitaningrum, D. A., Masyhuri, M., Hartono, S., & Jamhari, J. (2018). Study of Beef Availability Potential in Yogyakarta Special Province (DIY) through Multi Criteria Analysis (MCA) Model by Spatial Geographic Information System. Agritech, 38(1), 71–78. doi: 10.22146/agritech.28888
Rusdiana, S., et al. (2018). The Effort of Beef Needs Supplying for Coming Years in Indonesia. The International Journal of Tropical Veterinary and Biomedical Research, 3(1), 48–59. doi: 10.21157/ijtvbr.v3i1.11364
Said, S. (2020). Integrated Livestock Business and Industry in Indonesia. IOP Conference Series: Earth and Environmental Science, 465(012003), 1–6. doi: 10.1088/1755-1315/465/1/012003
Salsabila, D. T., Sambodo, H., & Suharno, S. (2023). Demand Analysis of Marine Fish in South Cilacap Sub-district: A Linear Approximate Almost Ideal Demand System (LA AIDS) Model Approach. Jurnal AGRISEP: Kajian Masalah Sosial Ekonomi Pertanian Dan Agribisnis, 22(1), 195–206. doi: 10.31186/jagrisep.22.01.195-206
Smeral, E. (2017). tourism forecasting Performance Considering The Instability of Demand Elasticities. Journal of Travel Research, 56(7), 913–926. doi: 10.1177/0047287 516671435
Soedjana, T. D. (2016). Penawaran, Permintaan Dan Konsumsi Produk Peternakan di Indonesia. Forum Penelitian Agro Ekonomi, 15(1–2), 17–34. doi: 10.21082/fae.v15n1-2.1997.17-34
Soler, L.-G., & Thomas, A. (2020). Is There A Win–Win Scenario With Increased Beef Quality and Reduced Consumption? Review of Agricultural, Food and Environmental Studies, 101(1), 91–116. doi: 10.1007/s41130-020-00116-w
Sun, F., et al. (2023). Agricultural Product Price forecasting Methods: A Review. Agriculture, 13(9), 1–20. doi: 10.3390/agriculture13091671
Tenriawaru, N., et al. (2022). Autoregressive Integrated Moving Average for Cocoa Production in Sulawesi Island 2021-2030. Jurnal AGRISEP: Kajian Masalah Sosial Ekonomi Pertanian Dan Agribisnis, 21(2), 425–436. doi: 10.31186/jagrisep.21.2.425-436
Tian, Q., Hilton, D., & Becker, M. (2016). Confronting The Meat Paradox in different Cultural Contexts: Reactions Among Chinese and French Participants. Appetite, 96(1), 187–194. doi: 10.1016/ j.appet.2015.09.009
Triatmojo, A., Muzayyanah, M. A. U., & Guntoro, B. (2023). Spatial Prices of Livestock Meat Products in Indonesia: Transmission and disparity Analysis. AIP Conference Proceedings, 2628(1), 1–9. doi: 10.1063/5.0144017
Triatmojo, A., et al. (2024). Technological Acceptance of Cattle Farmers in Mobile Applications for Livestock digital Marketing. Buletin Peternakan, 48(2), 153-168. doi: 10.21059/buletinpeternak.v48i2.92075
Tuaç, Y., Güney, Y., & Arslan, O. (2020). Parameter Estimation of Regression Model With AR(P) Error Terms Based on Skew distributions With EM Algorithm. Soft Computing, 24(5), 3309–3330. doi: 10.1007/s00500-019-04089-x
Utami, N., Prayuginingsih, H., & Aulia, A. N. (2019). Analysis of Demand for Beef district of Jember. Jurnal Agribest, 3(2), 125-138. doi: 10.32528/agribest.v3i2.2572
Vashishtha, A. (2020). Cobweb Price Dynamics Under The Presence of Agricultural Futures Market: Theoretical Analysis. International Review of Economics, 67(2), 131–162. doi: 10.1007/s12232-019-00335-8
Widarjono, A. (2007). Econometrics: Theory and Application to Economics and Business (2nd ed.). Yogyakarta: Ekonisia FE Islamic University of Indonesia
Widiati, R. (2015). Developing Beef Cattle Industry At Smallholders to Support Beef Self-Sufficiency. Indonesian Bulletin of Animal and Veterinary Sciences, 24(4), 191–200. doi: 10.14334/wartazoa.v24i4.1090
Wijaya, T., et al. (2021). Qualitative Study of Yogyakarta Palace Culinary Gastronomic tourism. Global Journal of Business, Economics and Management, 11(1), 58–68. doi: 10.18844/gjbem.v11i1.5115
Zaremba, Ł. (2018). Cobweb Theorem in Relation to The Fruit Market. Annals of The Polish Association of Agricultural and Agribusiness Economists, 20(3), 190–195. doi: 10.5604/01.3001.0012.1516