
 

 

 

Comparison of Robust Regression Methods: Least Trimmed 
Squares and Maximum Likelihood for Handling Outliers 

Andro Kurniawan*, Cinta R. Oktarina, dan Sabarinsyah 

Bachelor of Mathematics Program, Batam Institute of Technology, Indonesia 

 
* Corresponding Author Email: andro@iteba.ac.id 

 
Article Information  Abstract 
Article History: 
Submitted: 27 November 2025 
Accepted:  19 December 2025 

Published: 31 December 2025 
 

 This study investigates the determinants of per capita expenditure in 154 regencies and 
cities across Sumatra Island. The use of the Ordinary Least Squares method is deemed 
inappropriate due to violations of classical assumptions and the presence of outliers 
within the dataset. To address these issues, robust regression approaches are applied, 
specifically M-estimation and Least Trimmed Squares (LTS). The dependent variable in 
the analysis is per capita expenditure, while the explanatory variables include poverty 
line, human development index, average years of schooling, and expected years of 
schooling. The estimation procedures are performed using both raw and standardized 
data. The empirical results demonstrate that each independent variable significantly 
influences per capita expenditure under both robust estimation techniques. To 
determine the most reliable method, the residual standard error is used as the evaluation 
criterion. The outcomes indicate that the LTS estimator applied to standardized data 
provides the lowest error value, suggesting that it is the most suitable approach for 
estimating the regression parameters associated with per capita expenditure in Sumatra. 
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1. INTRODUCTION 

Robust regression serves as an analytical framework that produces stable parameter estimates even when datasets 
contain outliers or exhibit violations of classical assumptions. Among the approaches frequently implemented within this 
framework are M-estimation and Least Trimmed Squares (LTS). Both techniques are specifically structured to minimize 
the impact of extreme observations, thereby generating parameter estimates that are generally more reliable than those 
obtained through the Ordinary Least Squares method, particularly when the data deviate from normality or include 
influential outliers. In this study, these two methods are applied to examine the factors associated with per capita 
expenditure, enabling a comparison of their performance based on the resulting residual standard error. 

The application of robust regression is crucial because the Ordinary Least Squares estimator is highly susceptible to 
abnormal observations and non-normal error structures. Such conditions can produce biased or misleading parameter 
estimates that fail to reflect the actual socioeconomic conditions. Consequently, an analytical approach capable of 
accommodating data irregularities is required to assess more accurately the relationship between per capita expenditure 
and variables such as poverty line, human development index, average years of schooling, and expected years of 
schooling. 

The socioeconomic landscape of Sumatra Island varies considerably across provinces, contributing to different 
determinants of per capita expenditure in each region. Disparities in infrastructure availability, educational attainment, 
and economic capacity among communities also influence variations in per capita expenditure levels and, ultimately, 
societal welfare. 

Poverty remains a central indicator for measuring development outcomes. According to the Central Statistics Agency, 
poverty is defined through a basic-needs framework, which captures the inability of individuals or households to meet 
minimum food and non-food requirements as reflected in per capita expenditure levels. For this reason, per capita 
expenditure functions as a key metric for evaluating community welfare. Higher levels of per capita expenditure indicate 
an increased capacity to satisfy fundamental needs, thereby providing an essential depiction of economic progress 
throughout regions in Sumatra. 
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2. METHOD 

2.1 Data 

The data source for this study is secondary data obtained from the official website bps.go.id. The data obtained 
includes per capita expenditure, poverty line, human development index, average years of schooling, and expected years 
of schooling. This study will use cross-sectional data with observations of districts/cities on the island of Sumatra, 154 
districts/cities in total. 

2.2 Research Variables 

The research variables used consist of 4 independent variables and 1 response variable, as shown in Table 1 as 
follows: 

Table 1. Research’s Variables. 

No Variable Description 

1 
2 
3 
4 
5 

𝑌 
𝑋1 
𝑋2 
𝑋3 
𝑋4 

Per Capita Expenditure (Thousand Rupiah/Person/Year) 
Poverty Line (Rupiah/Per Capita/Month) 
Human Development Index (Percent) 
Average Years of Schooling (Years) 
Expected Years of Schooling (Years) 

Per capita expenditure refers to the total monthly consumption costs incurred by all members of a household—
whether originating from purchases, received goods, or self-produced items—divided by the number of individuals 
within the household. 

The Poverty Line (PL) represents the minimum monetary value required by an individual to fulfill essential monthly 
needs, encompassing both food and non-food components. 

The Human Development Index (HDI) serves as a composite indicator that reflects achievements in life expectancy, 
education, and overall standard of living. This index illustrates the extent to which populations are able to access the 
outcomes of development in areas such as income, health, and education. 

Average Years of Schooling (AYS) denotes the mean duration of formal education completed by individuals aged 15 
years and older across all forms of schooling they have undertaken. 

Expected Years of Schooling (EYS) represents the projected number of years of education that a child of a given age is 
anticipated to complete. This indicator provides insight into the expected performance and development trajectory of 
the education system at various stages. 

2.3 Data Analysis 

The following are the steps for data analysis: 
a. Conduct data exploration. 
b. Standardize the data. 
c. The data used consists of 1 dependent variables, namely average per capita expenditure, and 4 independent variables, 

namely 𝑋1, 𝑋2, 𝑋3, and 𝑋4 with the following regression model: 
𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝛽4𝑋4𝑖      (1) 

d. Implementing a series of classical assumption evaluations encompassing residual normality, heteroscedasticity, 
multicollinearity, and autocorrelation assessments. If the normality assumption test is not met, it is suspected that 
there is outlier data. The next process is to detect outliers. 

e. Detect outliers using the DFFITS method. 
f. Perform estimation on Robust regression using the LTS estimation algorithm. 
g. Estimate robust regression using the M-estimation algorithm. 
h. Conducting partial and simultaneous tests to see which factors are significant or influence average per capita 

expenditure. 
i. Select the better estimation method by looking at the smallest standard error residual value. 
j. Finally, interpret the results obtained. 

2.4 Multiple Regression Analysis Using the Least Squares Method 

The model for the multiple regression analysis can be expressed as: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽𝑖2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 + 𝜀𝑖     (2) 

In this formulation, 𝑌𝑖 denotes the observed value of the dependent variable in observation-i, 𝛽0, 𝛽1 , … , 𝛽𝑝 is the 

parameter whose value is unknown, 𝑋𝑖1, 𝑋𝑖1, … 𝑋𝑖𝑝 is the value of the independent variable in observation-i, and 𝜀𝑖 is a 

random error distributed normally with a mean of zero and a variance 𝜎2 . 
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The estimation of the regression coefficients is carried out using the Ordinary Least Square (OLS) approach, in which 
the parameter 𝛽 is obtained by minimizing the sum of squared residuals. The parameter estimation is as follows: 

𝜷̂ = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚       (3) 

Where 𝜷̂ is the vector of estimated parameters of size (𝑝 + 1) × 1, 𝑋 is the predictor variable matrix of size 𝑛 × (𝑝 + 1) , 
and 𝒚 is the observation vector of the response variable of size 𝑛 × 1 . 

2.4.1 Multicollinearity Test 

According to[1], the purpose of multicollinearity assessment is to identify whether the explanatory variables in the 
regression model exhibit intercorrelation. An ideal regression model is expected to be free from multicollinearity. The 
presence of multicollinearity can be examined through tolerance values and the Variance Inflation Factor (VIF). A 
tolerance value not exceeding 0.10 or a VIF value greater than 10 generally indicates that multicollinearity is present 
among the predictors. 

2.4.2 Heteroscedasticity Test 

According to [1], heteroscedasticity test evaluates whether the variance of the residuals remains constant across 
observations. One of the fundamental assumptions in regression analysis is the absence of heteroscedasticity. In this 
study, heteroscedasticity is examined using the Glejser test, which investigates the relationship between the absolute 
residuals and the independent variables. If the resulting significance value exceeds the 5% confidence threshold, the data 
are considered free from heteroscedasticity problems. 

2.4.3 Normality Test 

According to [1], the normality test is conducted to determine whether the residuals of the regression model follow a 
normal distribution, as required for valid statistical inference. A properly specified regression model generally produces 
residuals that approximate a normal distribution. To evaluate this assumption, the Anderson–Darling test is applied at a 
5% significance level. When the test yields a p-value greater than 5%, the residuals are regarded as normally distributed. 

2.4.4 Autocorrelation Test 

According to [1], the autocorrelation test examines whether residuals from one time period are correlated with 
residuals from another. Autocorrelation, if present, indicates a violation of classical regression assumptions. In this study, 
first-order autocorrelation is evaluated using the Durbin–Watson (DW) test, which is appropriate when the model 
includes a constant term. Additionally, the Run Test—a nonparametric method—can be employed to assess whether the 
sequence of residuals exhibits randomness or systematic correlation. 

2.4.5 Significance Test 

According to [2] , in multiple regression analysis, there are several significance tests that are useful for measuring the 
accuracy of the model, including the following: 
1.  Regression Model Significance Test  
 This test is conducted to examine whether a linear association exists between the response variable 𝑌 and the 

predictor variables 𝑋1, 𝑋2, … , 𝑋𝑘  or not. When the dependent variable is linearly influenced by the predictor variables, 
the constructed regression model can be considered appropriate for describing the underlying relationship. The 
following are the steps:  
a. Hypothesis 
 𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0 (The regression model is not appropriate) 
 𝐻1: there is at least one𝛽𝑗 ≠ , with j = 1, 2, …, k (The regression model is appropriate)  

b.  Test statistic 

  F0 =  
SSR/𝑘

SSE/(𝑛−𝑘−1)
=

MSR

MSE
; SSR = ∑ (𝑌̂𝑖 − 𝑌̂)

2
; SSE = ∑ (𝑌̂𝑖 − 𝑌̂𝑖)

2𝑛
𝑖=1

𝑛
𝑖=1     (4) 

c.  Test criteria 
 H0 Rejected if F0 >  F𝑡𝑎𝑏𝑙𝑒 = F(𝛼;𝑘;𝑛−𝑘−1) , or 𝑝𝑣𝑎𝑙𝑢𝑒 < 𝛼 

2.  Test of Individual Regression Coefficient Significance 
 The test assesses whether each predictor exerts a measurable effect on the response variable. The steps are: 

a. Hypothesis  
H0: 𝛽𝑗 = 0 (𝑥𝑗  t regression coefficient is not significant)  

H1: 𝛽𝑗 ≠ 0, with j = 1, 2, …, k (𝑥𝑗 t regression coefficient is significant)  

b. Test statistic  
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  t0 =  
𝛽̂𝑗

𝑆𝑒(𝛽̂𝑗)
 with S𝑒(𝛽̂𝑗) = √𝜎̂2𝐶𝑗𝑗        (5) 

 Where 𝐶𝑗𝑗  is the diagonal element of(X ,X)−𝟏 and 𝜎̂2 =
∑ (Y𝑖−Ŷ𝑖)

2𝑛
𝑖=1

𝑛−𝑘−1
 

c.  Test criteria  
 H0 rejected if |t0| >  t𝑡𝑎𝑏𝑙𝑒 = t(𝛼/2;𝑛−𝑘−1) 𝑜𝑟 𝑝𝑣𝑎𝑙𝑢𝑒 < 𝛼 

2.5 Outlier Data 

The effect of outliers in data analysis can be distinguished based on the origin of the outliers, namely those originating 
from the response variable (youtliers; influence points) or originating from the independent variable (x-outliers; leverage 
points) [3] . 

In relation to regression analysis, outliers cause the following [4] :  
1.  Large residuals from the model 
2.  The variance in the data becomes large 
3.  The interval estimate has a wide range 
In regression analysis, there are three types of outliers that affect the least squares estimation, namely: 
a.  Vertical Outlier 
 These observations represent cases that deviate substantially in the dependent variable while remaining within 

the expected range of the predictors. Such vertical outliers can distort the results produced by the least squares 
estimator. 

b.  Good Leverage Point  
 These observations exhibit extreme values in the predictor variables, yet they lie close to the fitted regression line. 

Although such good leverage points do not destabilize the least squares estimates, they may influence statistical 
inference by increasing the estimated standard errors. 

c.  Bad Leverage Point  
 This type of observation displays extreme values in the predictor variables and lies far from the regression line. 

Bad leverage points can substantially distort least squares estimates, influencing both the intercept and the slope 
of the regression model. 

Outlier identification methods are divided into two types: graphical methods, which rely solely on visualization and 
are highly dependent on the researcher's perspective on the resulting graph, and statistical calculation methods. Several 
methods for identifying outliers in an analysis are as follows:  

a.  Scatterplot  
 This approach involves creating a plot of data for each observation 𝑖 (𝑖 = 1, 2, …, 𝑛). After a regression model is 

fitted, a residual plot–graphing the residual 𝑒𝑖 against the predicted values 𝑌̂𝑖–may also be examined. The presence 
of one or more points that deviate markedly from the overall pattern of the data suggests the existence of outliers. 

b.  Boxplot  
 This method uses quartiles and range to detect outliers. Quartiles 1, 2, and 3 divide the previously sorted data into 

four parts. The interquartile range (IQR) is defined as the difference between quartiles 1 and 3, or IQR = 𝑄3 − 𝑄1 . 
Outliers are values less than 1.5*IQR for quartile 1 and values greater than 1.5*IQR for quartile 3. 

c.  Leverage Values Method  
 This approach examines the impact that each observation may have on the resulting parameter estimates, allowing 

influential points to be identified. This can be seen from the distance of the X values of all observations. The 
leverage value for simple linear regression can be determined as follows [5] :  

𝐿𝑎𝑣𝑒𝑟𝑎𝑔𝑒(ℎ𝑖𝑖) =
1

𝑛
+

(𝑋𝑖−𝑋̅)2

(𝑛−1)𝑆𝑥
2      (6) 

where:  
ℎ𝑖𝑖  : leverage of the i-th case  
𝑛  : number of data  
𝑋𝑖  : value for case i  
𝑆𝑥

2 : the squares 𝑛 The case consists of the deviation 𝑋𝑖  s from the mean  
𝑋̅ : mean of 𝑋 
For observations involving more than one explanatory variable, the leverage measure is computed using the 
matrix expression shown below: 

𝑯 = 𝑿(𝑿′𝑿)−𝟏𝑿′      (7) 

Where 𝑯 is the hat matrix, the elements of the𝑖 diagonal of the hat matrix are the leverage values, and 𝑋 is the 
matrix 𝑋. The outlier approach is based on the cutoff value, and if the value ℎ𝑖𝑖  exceeds the cutoff value, it is detected 
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as an outlier. The specified cutoff value is 
2𝑝

𝑛
 , where 𝑛 is the amount of data, and 𝑝 is the number of parameters in 

the regression equation formed, including the intercept [6] . 
d.  DFFITS Method (Difference Fitted Value FITS)  
 This method displays the change in the predicted value when the 𝑖-th case is removed from the standardized 

research data [4] . The DFFITS calculation is as follows:  

𝐷𝐹𝐹𝐼𝑇𝑆 = 𝑡𝑖 (
ℎ𝑖𝑖

1−ℎ𝑖𝑖
)

1

2
      (8) 

where𝑡𝑖  is Rstudent for case-𝑖 and ℎ𝑖𝑖  is the leverage value for case-𝑖. Data is considered an outlier if the 

value|𝐷𝑓𝐹𝐼𝑇𝑆| > 2√
𝑝

𝑛
 with 𝑝 is the number of parameters and 𝑛 is the number of data observations [7] . 

2.6 Robust Regression 

In his book, [8] explains that one of the deviations that occurs when there are outliers is a violation of the assumption 
of normality. Outliers should not be discarded without justification, as they may represent meaningful patterns or 
information that cannot be obtained from the remaining observations. If an observation is known to be an outlier in a 
study, the use of OLS will produce imperfect conclusions. Robust regression is used as an alternative. In general, robust 
means strong. [6] explains that robust regression is able to reduce the influence of outliers compared to using MKT, 
resulting in a strong estimator that is not affected by the presence of outliers. Using robust techniques, a regression model 
can be constructed that lessens the impact of data points with unusually large residuals. Instead of eliminating these 
observations, the method focuses on finding parameter estimates that align well with the bulk of the data, resulting in a 
more dependable model 

In robust regression, there are several estimation methods for estimating regression parameters, one of which is M 
estimation introduced by Huber (1973) and Least Trimmed Squares (LTS) estimation introduced by Rousseeuw (1984). 
In M-estimation, the estimator is obtained by finding the parameter values that minimize a specified function 𝜌 of the 
residuals, which serves as the basis for its robustness. Meanwhile, the LTS estimation method has the basic principle of 
minimizing the sum of trimmed residual squares. 

2.7 M-Estimation 

According to [8], as a likelihood-based estimation technique, robust M-Regression determines its parameter values 
through the minimization of a residual-related objective function. In the conventional MKT formulation, this objective 
simplifies to minimizing the total of the squared residuals. Equation (9) is the MKT estimator according to [9] . 

∑ (𝑦𝑖 − 𝒙𝒊
′𝜷)2 = ∑ 𝑒𝑖

2𝑛
𝑖=1

𝑛
𝑖=1       (9) 

Robust-M estimator, replacing 𝑒𝑖
2 in equation (9) with 𝜌(𝑢𝑖) where the value of 𝑢𝑖  can be seen in equation (10). 

𝑢𝑖 =
𝑒𝑖

𝑠
        (10) 

As a result, the estimation process for the Robust-M method consists of finding the parameter values that yield the 
smallest value of the objective function described in equation (11)  

∑ 𝜌(𝑢𝑖)
𝑛
𝑖=1 = ∑ 𝜌 (

𝑒𝑖

𝜎
) = ∑ 𝜌 (

𝑦𝑖−𝒙𝒊
′𝜷

𝜎
)𝑛

𝑖=1
𝑛
𝑖=1     (11) 

The function contributes to each residual under the condition that it must satisfy the following property: 

1. 𝜌(𝑢𝑖 ) ≥ 0 
2. 𝜌( 0) =  0 
3. 𝜌(𝑢𝑖 ) =  𝜌(−𝑢𝑖) 
4. 𝜌(𝑢𝑖 ) ≥  𝜌(−𝑢𝑖) for |𝑒𝑖| ≥ |𝑢𝑖| 

The formulation of the Robust-M estimator is provided in equation (12) [10] .  

min ∑ 𝜌(𝑢𝑖)
𝑛
𝑖=1 = min ∑ 𝜌 (

𝑒𝑖

𝜎
) = min ∑ 𝜌 (

𝑦𝑖−𝒙𝒊
′𝜷

𝜎
)𝑛

𝑖=1
𝑛
𝑖=1     (12) 

The M-estimator as a solution to equation (12) requires setting a scale to produce equation (13). The scale of the Robust 
estimator is s, with the following formula: 

𝑠 =
median|𝑒𝑖−𝑚𝑒𝑑𝑖𝑎𝑛(𝑒𝑖)|

0.6745
=

𝑀𝐴𝐷

0.6745
   (13) 
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Tukey’s bisquares weighting function can be utilized as the chosen 𝜌function, with its formulation presented in equation 
(14). 

𝜌(𝑢𝑖 ) = {

𝑢𝑖
2

2
−

𝑢𝑖
4

2𝑐2 +
𝑢𝑖

6

6𝑐4 , |𝑢𝑖| ≤ 𝑐

    
𝑐2

6
,                     |𝑢𝑖| > 𝑐  

     (14) 

The Tukey’s Bisquares weighting function provides better results in dealing with outliers than other weighting 
functions. In equation (13), the median is applied because of its robustness to the presence of outliers. By incorporating 
the constant 0.6745 into the computation, the resulting scale estimate 𝑠becomes approximately unbiased when the 
sample size 𝑛is sufficiently large. 

To obtain a solution for equation (13), we compute the first partial derivative of 𝜌 with respect to 𝛽𝑗(𝑗 = 0,1,2 … , 𝑝) 

and impose the stationary conditions by equating these first-order partial derivatives to zero in equation (15). With 𝛹 =
𝜌′ and 𝑋𝑖𝑗  being the i-th observation at the j-th point. 

∑ 𝑋𝑖𝑗𝛹 (
𝑦𝑖−𝒙𝒊

′𝜷

𝑠
) = 0𝑛

𝑖=1       (15) 

To obtain the solution, a weighting function is first defined, as expressed in equation (16). 

𝑤(𝑒𝑖) =
𝛹(

𝑦𝑖−𝒙𝒊
′𝜷

𝑠
)

(
𝑦𝑖−𝒙𝒊

′𝜷

𝑠
)

      (16) 

It is known that 𝑢𝑖 =
𝑒𝑖

𝑠
  so that equation (16) can be rewritten as equation (17). 

𝑤𝑖 = { [1 − (
𝑢𝑖

𝑐
)

2

]
2

, |𝑢𝑖| ≤ 𝑐

    0                   ,   |𝑢𝑖| > 𝑐  

           (17) 

In this study, the Tukey bisquares weight is applied using a tuning constant 𝑐specified as 4.685. After the Tukey's 
Bisquares weighting is substituted into equation (9), the equation can be rewritten as equation (18). 

∑ 𝑥𝑖𝑗𝑤𝑖(𝑦𝑖 − 𝒙𝒊
′𝜷) = 0𝑛

𝑖=1       (18) 

Equation (18) can be written in matrix form as equation (19). 

𝜷̂𝒓𝒐𝒃𝒖𝒔𝒕 = (𝑿′𝑾𝟎𝑿)−𝟏𝑿′𝑾𝟎𝒚     (19) 

which refers to the diagonal matrix constructed from Tukey’s bisquares weights, where each diagonal entry is given by. 
Equation (19) is known as the Weighted Least Squares (WLS) equation [9] .  

The M-estimation algorithm can be seen from the description below: 

a. Calculating the estimated 𝛽̂ parameters using MKT 
b. Identifying potential outliers within the dataset 
c. Compute the residual values 𝑒𝑖 = (𝑦𝑖 − 𝑦̂𝒊) 

d. Calculate the value 𝜎̂ =
𝑚𝑒𝑑𝑖𝑎𝑛|𝑒𝑖−𝑚𝑒𝑑𝑖𝑎𝑛(𝑒𝑖)|

0.6745
=

𝑀𝐴𝐷

0.6745
 

e. Calculating the value 𝑢𝑖 =
𝑒𝑖

𝜎̂
 

f. Calculating the weighted value 

 𝑤𝑖 = {[1 − (
𝑢𝑖

𝑐
)

2

]
2

,     |𝑢𝑖| ≤ 𝑐

0,                           |𝑢𝑖| > 𝑐

 

 with: 
 𝑢𝑖  : the value of the division of residual and the nth𝜎 𝑖 

𝑐 : the tuning constant that has been set to determine the level of robustness 
𝑤𝑖   : the weight value of the𝑖 

g. Calculate 𝛽̂ the M-estimator residual using the Weighted Least Squares (WLS) method with weights 𝑤𝑖  

h. Repeat steps (d) until (g) to obtain the convergent value of 𝛽̂ the estimated M, meaning that at iteration-𝑖, the 
estimated parameters will be the same as in the subsequent iteration. 
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i. Perform a test to determine whether the independent variables have a significant effect on the dependent 
variables using a simultaneous test that looks at the value 𝐹𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 and a partial test that looks at the value 
𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 

The algorithm above is taken from [11] . 

2.8 Least Trimmed Squares (LTS) Estimation 

The equation for the LTS estimation method is as follows: 

𝑚𝑖𝑛 ∑ 𝑒(𝑖)
2ℎ

𝑖=1       (20)  

ℎ = [
𝑛

2
] + [

𝑝+1

2
]        (21) 

[12] 
The LTS estimator possesses a high breakdown point, reaching up to 50%. The breakdown point indicates the 

maximum proportion of contaminated observations that the estimator can tolerate before the fitted model becomes 
unreliable. This method operates by minimizing the sum of the squared residuals for the best ℎ observations. 

The LTS estimation algorithm is as follows [13] : 

a. Calculate the parameter estimates 𝛽̂𝑖𝑛𝑖𝑡𝑖𝑎𝑙  using the MKT method. 

b. Calculate the residual values𝑒𝑖 using 𝑒𝑖 = (𝑦𝑖 − 𝑦̂𝑖) corresponding to 𝛽̂𝑖𝑛𝑖𝑡𝑖𝑎𝑙  . 
c. Calculate the observed ℎ using equation (24) with the 𝑒(𝑖)

2  value. 

d. Performing calculations using equation (23). 

e. Calculate the parameter estimates 𝛽̂𝑛𝑒𝑤 using the MKT method from the calculated ℎ observations. 

f. Determine the residual sum of squares 𝑒𝑖
2 = (𝑦𝑖 − 𝑦̂𝑖)2 corresponding to the obtained 𝛽̂𝑛𝑒𝑤   , then calculate the sum 

of ℎ𝑛𝑒𝑤 observations with the value 𝑒(𝑖)
2  . 

g. Perform the calculation from equation (24) with the value ℎ𝑛𝑒𝑤. 
h. Performing C-steps by repeating steps (e) to (g) until the objective function (∑ 𝑒(𝑖)

2ℎ
𝑖=1 ) converges, meaning that at 

iteration-𝑖 , the sum of residual squares and the parameter estimates will be the same as in the next iteration. 

3. RESULTS AND DISCUSSION 

3.1 Data Description 

This study uses 2021 per capita expenditure data as the dependent variable and uses poverty line, human 
development index, average years of schooling, and expected years of schooling as independent variables. This data is 
from 154 districts/cities on the island of Sumatra, obtained from the official BPS website. Data description was performed 
to see the data profile for each variable, along with descriptive statistics of the research variables used in the case study. 

Table 2. Descriptive Statistics of Data Variables. 

Variable 
Data Summary 

Minimum Maximum Range Average Variance 
𝑌 6152 18506 12354 10919 4280669 
𝑋1 350452 860629 510177 509697 9316792976 
𝑋2 62.19 86.28 24.09 71.61 19.83548 
𝑋3 5.880 13.030 7.15 8.962 1.788573 
𝑋4 11.43 17.81 6.38 13.36 1.088898 

Table 3. Descriptive Statistics of Standardized Data Variables. 

Variable 
Data Summary 

Minimum Maximum Range Average Variance 
𝑌 −2.3039 3.6672 5.9711 0 1 
𝑋1 -1.6498 3.6357 5.2855 0 1 
𝑋2 −2.1156 3.2933 5.4089 0 1 
𝑋3 −2.3046 3.0417 5.3463 0 1 
𝑋4 −1.8484 4.2656 6.114 0 1 

3.2 Least Squares Regression Analysis 

The parameter estimation results are as follows: 
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Table 4. Original Data Estimation Results. 

Parameter Estimated Value 
Intercept −2.14 × 104 

𝛽1 2.40 × 10−3 
𝛽2 6.51 × 102 
𝛽3 −7.26 × 102 
𝛽4 −6.72 × 102 

𝑅 − 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 = 85.11% 

Based on Table 4, parameter estimates were obtained to form an initial model using the least squares regression 
method, namely: 

𝑌 = −2.14 × 104 + 2.40 × 10−3𝑋1 + 6.51 × 102𝑋2 − 7.26 × 102𝑋3 − 6.72 × 102𝑋4 + 𝜀  (22) 

After obtaining the initial model with an 𝑅2 value of 85.11%, it means that the independent variables, namely the 
poverty line, human development index, average years of schooling, and expected years of schooling, can explain 85.11% 
of the variance in the dependent variable, while the remaining 14.89% is explained by other variables not studied. 

Table 5. Standardized Data Estimation Results. 

Parameter Estimated Value 
𝛽1 0.11210 
𝛽2 1.40084 
𝛽3 −0.46911 
𝛽4 −0.33876 

𝑅 − 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 = 85.11% 

From the information presented in Table 5, the regression model is estimated as follows: 

𝑌 = 0.11210𝑋1 + 1.40084𝑋2 − 0.46911𝑋3 − 0.33876𝑋4 + 𝜀   (23) 

3.3 Classical Assumption Test 

An assessment of the classical regression assumptions was performed, encompassing tests for normality, 
heteroscedasticity, multicollinearity, and autocorrelation. The findings from these evaluations are reported below: 

Table 6. Results of Classical Assumption Tests. 

Type of Test Statistical Value p-value Decision Conclusion 

Normality 1.5515 0.0005 Reject 𝐻0 
Data is not normally 
distributed 

Heteroscedasticity 2.6792 0.6129 Accept 𝐻0 No heteroscedasticity 

Multicollinearity 
𝑋1 = 1.578, 𝑋2 = 6.902 
𝑋3 = 6.909, 𝑋4 = 2.407 

- All 𝑉𝐼𝐹 < 10 No multicollinearity 

Autocorrelation 1.5391 0.0012 Reject 𝐻0 
There is 
autocorrelation 

3.4 Outlier Identification 

Outliers were identified using the DFFITS test, assuming that if the value is|𝐷𝐹𝐹𝐼𝑇𝑆| > 2√
𝑝

𝑛
 , then the data is 

considered an outlier. This study has 154 data points, resulting in2√
5

154
= 0.3603 . The data that are outliers in the 

original data and standardized data are present in Table 7: 
Table 7. Original Data and Standardized Data. 

No DFFITS Value Absolute Value  Decision 
19 1.2578 1.2578 

> 0.3603 
Data  

is  
an outlier 

50 0.5139 0.5139 
146 −0.6214 0.6214 
149 0.4980 0.4980 
150 0.7018 0.7018 
151 0.5262 0.5262 
153 0.7683 0.7683 
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Based on Table 7, using the original data and standardized data, it was found that observations 19, 50, 146, 149, 150, 
151, and 153 were outliers. In accordance with the initial assumption, the 7 observations have a value of 𝐷𝐹𝐹𝐼𝑇𝑆 >
0.3603 . Outliers can also be seen from the plot in Figure 1 as follows:  

 

Figure 1. DFFITS Plot 

3.5 Robust Regression Analysis with LTS Estimation 

This study was conducted using robust regression with LTS estimation using R-studio software to facilitate the 
analysis. The results obtained with the help of R-studio software are shown in Table 8 as follows: 

Table 8. Output of the Robust Regression Using the LTS Estimator. 

Parameters 
Original Data Standardized Data 

Estimated Value 
Intercept −1.80 × 104  

𝛽1 2.01 × 10−3 0.0938 
𝛽2 6.05 × 102 1.3029 
𝛽3 −5.76 × 102 −0.3725 
𝛽4 −7.76 × 102 −0.3914 

Based on Table 8, the model for estimating LTS in the original data is:  

𝑌 = −0.000018 + 0.00201𝑋1 + 605𝑋2 − 576𝑋3 − 776𝑋4 + 𝜀   (24) 

Meanwhile, the model obtained by standardizing the data first is: 

𝑌 = 0.0938𝑋1 + 1.3029𝑋2 − 0.3725𝑋3 − 0.3914𝑋4 + 𝜀           (25) 

The model obtained must be tested through a simultaneous validation process, which is a simultaneous testing of all 
parameters in the regression model. Simultaneous test give value 2.2 × 10−16 and original data LTS significance test can 
see at the table below. 

Table 9. Original Data LTS Significance Test. 

Parameter 
Partial Test 

Decision 
𝑡ℎ𝑖𝑡𝑢𝑛𝑔 𝑝𝑣𝑎𝑙𝑢𝑒 

𝛽1 3.010 0.0031 Reject 𝐻0 
𝛽2 19.505 2 × 10−16 Reject 𝐻0 
𝛽3 −5.613 1.03 × 10−7 Reject 𝐻0 
𝛽4 −9.956 2 × 10−16 Reject 𝐻0 
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3.5.1 Simultaneous Test of Original Data 

1. Formulating hypotheses 
  𝐻0: 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 0 (There is no simultaneous effect of the independent variable on the dependent 

variable) 
 𝐻1: 𝛽𝑖 ≠ 0, for 𝑖 = 1,2,3,4 (There is a simultaneous effect of the independent variables on the dependent variable)  
2. Test level 
 The analysis is conducted using the F distribution at the 5% significance level. 
3. Test statistic 

𝐹𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑  =  
𝐾𝑇𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝐾𝑇𝐸𝑟𝑟𝑜𝑟
= 291.6 

4. Rejection criterion 
 Reject 𝐻0 if 𝐹𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 > 𝐹𝑡𝑎𝑏𝑙𝑒  or 𝑝𝑣𝑎𝑙𝑢𝑒 < 𝛼  
5. Conclusion 
 The value of 𝐹𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 7.164 > 𝐹𝑡𝑎𝑏𝑙𝑒  and 𝑝𝑣𝑎𝑙𝑢𝑒  < 𝛼  , then 𝐻0 is rejected. This means that there is an influence 

of the independent variable on the dependent variable simultaneously at the 5% significance level. 

3.5.2 Partial Test of Original Data 

All variables are found to significantly affect per capita expenditure based on the partial test results. The poverty line 
variable has 𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 3.010 with 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.0031 , the human development index variable has 𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 19.505 
with 𝑝𝑣𝑎𝑙𝑢𝑒 = 2 × 10−16 , the expected years of schooling variable has 𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 5.613 with 𝑝_𝑣𝑎𝑙𝑢𝑒 = 1.03 × 10−7 , 
and the average years of schooling variable has 𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 9.956 with 𝑝_𝑣𝑎𝑙𝑢𝑒 = 2 × 10−16 . All 𝑝𝑣𝑎𝑙𝑢𝑒 are smaller than 
𝛼 =  5% so that 𝐻0 is rejected for all parameters. The significance of the four estimated parameters demonstrates that 
every predictor plays a meaningful role in explaining per capita expenditure. Consequently, the resulting model can be 
regarded as valid and appropriate for analytical purposes. 

3.5.3 Simultaneous Test of Standardized Data 

1. Formulating the hypothesis 
  𝐻0: 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 0 (There is no simultaneous effect of independent variables on the dependent variable) 
 𝐻1: ∃𝛽𝑗 ≠ 0, for 𝑗 = 1,2,3,4 (There is a simultaneous effect of independent variables on the dependent variable)  

2. Test level 
 The distribution used is the F distribution with a significance level of 5%. 
3. Test statistics 

𝐹𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑  =  
𝐾𝑇𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝐾𝑇𝐸𝑟𝑟𝑜𝑟
= 276 

4. Rejection criterion 
 Reject 𝐻0 if 𝐹𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 > 𝐹𝑡𝑎𝑏𝑙𝑒  or 𝑝𝑣𝑎𝑙𝑢𝑒 < 𝛼 
5. Conclusion 
 The value of 𝐹𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 276 > 𝐹𝑡𝑎𝑏𝑙𝑒  and 𝑝𝑣𝑎𝑙𝑢𝑒 < 𝛼 , then 𝐻0 is rejected. This means that there is an influence of 

the independent variable on the dependent variable simultaneously at the significance level of 5% . 

3.5.4 Partial Test of Standardized Data 

The four partial tests show that all variables, namely the poverty line (𝑝𝑣𝑎𝑙𝑢𝑒 = 0,0031 ), human development index 
(𝑝𝑣𝑎𝑙𝑢𝑒 = 2 × 10−16 ), expected years of schooling (𝑝𝑣𝑎𝑙𝑢𝑒 = 1,03 × 10−7 ), and average years of schooling (𝑝𝑣𝑎𝑙𝑢𝑒 = 2 ×
10−16 ), have 𝑝𝑣𝑎𝑙𝑢𝑒 smaller than α = 5%, so 𝐻0 is rejected for each parameter. Thus, all regression coefficients (𝛽1, 𝛽2, 𝛽3, 
, and 𝛽4) are significant, meaning that each variable has a significant effect on per capita expenditure and the regression 
model used is appropriate for explaining the relationship between these variables. 

3.6 Robust Regression Analysis M Estimation 

Table 10 below provides the summary of results obtained through the robust M-estimation regression procedure: 

Table 10. Results of Robust M-Estimation Regression. 

Parameter 
Original Data Standardized Data 

Estimated Value 
Intercept −20505.03  

𝛽1 0.0023 0.1087 
𝛽2 639.62 1.376 
𝛽3 −678.39 −0.4353 
𝛽4 −714.96 −0.3610 

Based on Table 10, the model for estimating LTS in the original data is: 
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𝑌 =− 20505.03+ 0.0023𝑋1 + 639.62𝑋2 − 678.39𝑋3 − 714.96𝑋4 + 𝜀  (26) 

Meanwhile, the model obtained by standardizing the data first is: 

𝑌 = 0.1087𝑋1 + 1.376𝑋2 − 0.4353𝑋3 − 0.3610𝑋4 + 𝜀   (27) 

The model obtained must be tested through a simultaneous validation process, which is a simultaneous testing of all 
parameters in the regression model.  

Table 11. M Significance Test of Original Data. 

Parameter 
Partial Test 

Decision 
𝒕𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅 

Intercept 12.3956 Reject 𝐻0 
𝛽1 3.0124 Reject 𝐻0 
𝛽2 18.3100 Reject 𝐻0 
𝛽3 5.8282 Reject 𝐻0 
𝛽4 8.1192 Reject 𝐻0 

3.6.1 Partial Test of Original Data 

The results of the significance test using M-standardized data are presented below: 

Table 12. Significance Test of Standardized Data M. 

Parameter 
Partial Test 

Decision 
𝒕𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅 

𝛽1 3.0071 Reject 𝐻0 
𝛽2 18.2157 Reject 𝐻0 
𝛽3 5.7584 Reject 𝐻0 
𝛽4 8.0899 Reject 𝐻0 

3.6.2 Partial Test of Standardized Data 

The partial test results indicate that each independent variable exerts a statistically significant effect on per capita 
expenditure at the 5% significance level. The poverty line variable has a value of 𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 3.0071 > 1.98, so that 𝛽1 is 
significant. The human development index variable is also significant with 𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 18.2157 > 1.98 . The average 
years of schooling variable is also significant with 𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 8.0899 > 1.98. Furthermore, the expected years of 
schooling variable has 𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 5.7584, which exceeds 𝑡𝑡𝑎𝑏𝑙𝑒  , so 𝛽3 is significant. Therefore, given that all four 
independent variables exert a statistically significant effect on per capita expenditure, the regression model is deemed 
suitable for use. 

3.7 Selection of the Best Estimation Model Using Residual Standard Error 

Table 13. Residual Standard Error Values. 

Residual Standard Error 
LTS Estimation M-Estimation 

Original Data Standardized Data Original Data Standardized Data 
612.5 0.2961 722.6 0.332 

Determination of the best estimation method from Robust regression related to solving outlier problems using the 
LTS estimation method and M-estimation, as well as using original data and standardized data by comparing the Residual 
Standard Error values of each method. The best estimation is the method that has the smallest residual standard error 
value. The data in Table 13 reveal that the lowest residual standard error originates from the LTS estimation using 
standardized data, among the two robust regression models. Therefore, LTS estimation based on standardized data 
proves to be a valid robust regression technique to use in estimating regression parameters for per capita expenditure 
data on the island of Sumatra in 2021. 
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3.8 Model Interpretation 

Based on the process of selecting the best model, we obtain a robust regression with standardized data and use 
the selected LTS estimation as the best model. The model validation process using a partial test will form the following 
LTS estimation robust regression equation model: 

𝑌 = 0.1087𝑋1 + 1.376𝑋2 − 0.4353𝑋3 − 0.3610𝑋4 + 𝜀   (28) 

The standardized robust regression model yields an 𝑅2 of 88.53%, indicating that 88.53% of the variation in the 
dependent variable—per capita expenditure—is accounted for by the poverty line, the human development index, 
average years of schooling, and expected years of schooling. The remaining 11.47% is influenced by other factors not 
included in this study. 

The standardized data model shows that the regression coefficient for the poverty line variable (𝑋1) is 0.1087. This 
implies that, holding the other variables constant, a one-unit increase in the poverty line is associated with a 0.1087 
increase in per capita expenditure. Since the coefficient is positive, it indicates a direct relationship between the poverty 
line and per capita expenditure—meaning that as the poverty line rises, per capita expenditure also tends to increase. 

The standardized model indicates that the human development index variable (𝑋2) has a regression coefficient of 
1.376. This suggests that, when all other variables are held constant, a one-unit rise in the human development index 
corresponds to a 1.376 increase in per capita expenditure. The positive sign of the coefficient shows a direct relationship 
between these variables—higher levels of the human development index are associated with higher per capita 
expenditure. 

The standardized model shows that the regression coefficient for the average years of schooling variable (𝑋3) is –
0.4353. This indicates that, with the other variables held constant, a one-unit increase in average years of schooling is 
associated with a 0.4353 decrease in per capita expenditure. The negative coefficient reflects an inverse relationship 
between average years of schooling and per capita expenditure—meaning that lower levels of average schooling 
correspond to higher per capita expenditure. 

The standardized model indicates that the regression coefficient for the expected years of schooling variable (𝑋4) is –
0.3610. This means that, when the other variables are held constant, a one-unit increase in expected years of schooling 
is associated with a 0.3610 decrease in per capita expenditure. The negative coefficient reflects an inverse relationship 
between expected years of schooling and per capita expenditure—where shorter expected schooling durations 
correspond to higher levels of per capita expenditure. 

4. CONCLUSION 

This study compares the Least Trimmed Squares (LTS) and M-estimation robust regression methods to model per 
capita expenditure in Sumatra. The results show that LTS estimation applied to standardized data yields the smallest 
residual standard error, indicating that it provides the most reliable parameter estimates in the presence of outliers. 

The empirical findings reveal that the poverty line, human development index, average years of schooling, and 
expected years of schooling have statistically significant effects on per capita expenditure at the 5% significance level. 
This indicates that socioeconomic and educational factors play a crucial role in explaining regional variations in per capita 
expenditure levels across districts and cities in Sumatra. 

These findings highlight the importance of applying robust regression techniques when socioeconomic data contain 
outliers. The proposed approach can be used as a reference for future studies involving regional welfare indicators and 
can assist policymakers in understanding the determinants of per capita expenditure. 
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