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data. The empirical results demonstrate that each independent variable significantly
influences per capita expenditure under both robust estimation techniques. To
determine the most reliable method, the residual standard error is used as the evaluation

DOI: criterion. The outcomes indicate that the LTS estimator applied to standardized data
https://doi.org/10.33369/diophantine.v4i2.46149 provides the lowest error value, suggesting that it is the most suitable approach for
estimating the regression parameters associated with per capita expenditure in Sumatra.

1. INTRODUCTION

Robust regression serves as an analytical framework that produces stable parameter estimates even when datasets
contain outliers or exhibit violations of classical assumptions. Among the approaches frequently implemented within this
framework are M-estimation and Least Trimmed Squares (LTS). Both techniques are specifically structured to minimize
the impact of extreme observations, thereby generating parameter estimates that are generally more reliable than those
obtained through the Ordinary Least Squares method, particularly when the data deviate from normality or include
influential outliers. In this study, these two methods are applied to examine the factors associated with per capita
expenditure, enabling a comparison of their performance based on the resulting residual standard error.

The application of robust regression is crucial because the Ordinary Least Squares estimator is highly susceptible to
abnormal observations and non-normal error structures. Such conditions can produce biased or misleading parameter
estimates that fail to reflect the actual socioeconomic conditions. Consequently, an analytical approach capable of
accommodating data irregularities is required to assess more accurately the relationship between per capita expenditure
and variables such as poverty line, human development index, average years of schooling, and expected years of
schooling.

The socioeconomic landscape of Sumatra Island varies considerably across provinces, contributing to different
determinants of per capita expenditure in each region. Disparities in infrastructure availability, educational attainment,
and economic capacity among communities also influence variations in per capita expenditure levels and, ultimately,
societal welfare.

Poverty remains a central indicator for measuring development outcomes. According to the Central Statistics Agency,
poverty is defined through a basic-needs framework, which captures the inability of individuals or households to meet
minimum food and non-food requirements as reflected in per capita expenditure levels. For this reason, per capita
expenditure functions as a key metric for evaluating community welfare. Higher levels of per capita expenditure indicate
an increased capacity to satisfy fundamental needs, thereby providing an essential depiction of economic progress
throughout regions in Sumatra.
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2. METHOD

2.1 Data

The data source for this study is secondary data obtained from the official website bps.go.id. The data obtained
includes per capita expenditure, poverty line, human development index, average years of schooling, and expected years
of schooling. This study will use cross-sectional data with observations of districts/cities on the island of Sumatra, 154
districts/cities in total.

2.2 Research Variables

The research variables used consist of 4 independent variables and 1 response variable, as shown in Table 1 as
follows:

Table 1. Research’s Variables.

No Variable Description

1 Y Per Capita Expenditure (Thousand Rupiah/Person/Year)
2 X1 Poverty Line (Rupiah/Per Capita/Month)

3 X, Human Development Index (Percent)

4 X3 Average Years of Schooling (Years)

5 X, Expected Years of Schooling (Years)

Per capita expenditure refers to the total monthly consumption costs incurred by all members of a household—
whether originating from purchases, received goods, or self-produced items—divided by the number of individuals
within the household.

The Poverty Line (PL) represents the minimum monetary value required by an individual to fulfill essential monthly
needs, encompassing both food and non-food components.

The Human Development Index (HDI) serves as a composite indicator that reflects achievements in life expectancy,
education, and overall standard of living. This index illustrates the extent to which populations are able to access the
outcomes of development in areas such as income, health, and education.

Average Years of Schooling (AYS) denotes the mean duration of formal education completed by individuals aged 15
years and older across all forms of schooling they have undertaken.

Expected Years of Schooling (EYS) represents the projected number of years of education that a child of a given age is
anticipated to complete. This indicator provides insight into the expected performance and development trajectory of
the education system at various stages.

2.3 Data Analysis

The following are the steps for data analysis:

a. Conduct data exploration.

Standardize the data.
c. The data used consists of 1 dependent variables, namely average per capita expenditure, and 4 independent variables,

namely X;, X;, X3, and X, with the following regression model:

Yi = Bo + B1X1i + B2 Xz + B3 X3i + PaXys (1)

d. Implementing a series of classical assumption evaluations encompassing residual normality, heteroscedasticity,
multicollinearity, and autocorrelation assessments. If the normality assumption test is not met, it is suspected that
there is outlier data. The next process is to detect outliers.
Detect outliers using the DFFITS method.
Perform estimation on Robust regression using the LTS estimation algorithm.
Estimate robust regression using the M-estimation algorithm.
Conducting partial and simultaneous tests to see which factors are significant or influence average per capita
expenditure.
Select the better estimation method by looking at the smallest standard error residual value.
Finally, interpret the results obtained.

@ e

— e

2.4 Multiple Regression Analysis Using the Least Squares Method

The model for the multiple regression analysis can be expressed as:
Y; = Bo + B1Xix + PixXizg + -+ PpXip + & (2)

In this formulation, Y; denotes the observed value of the dependent variable in observation-i, S, 8;, ..., B, is the
parameter whose value is unknown, X;q, X;q, ... Xj is the value of the independent variable in observation-i, and &; is a
random error distributed normally with a mean of zero and a variance o2 .
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The estimation of the regression coefficients is carried out using the Ordinary Least Square (OLS) approach, in which
the parameter 8 is obtained by minimizing the sum of squared residuals. The parameter estimation is as follows:

B=X"X)"1XTy (3)

Where B is the vector of estimated parameters of size (p + 1) x 1, X is the predictor variable matrix of size n x (p + 1),
and y is the observation vector of the response variable of size n x 1.

2.4.1 Multicollinearity Test

According to[1], the purpose of multicollinearity assessment is to identify whether the explanatory variables in the
regression model exhibit intercorrelation. An ideal regression model is expected to be free from multicollinearity. The
presence of multicollinearity can be examined through tolerance values and the Variance Inflation Factor (VIF). A
tolerance value not exceeding 0.10 or a VIF value greater than 10 generally indicates that multicollinearity is present
among the predictors.

2.4.2 Heteroscedasticity Test

According to [1], heteroscedasticity test evaluates whether the variance of the residuals remains constant across
observations. One of the fundamental assumptions in regression analysis is the absence of heteroscedasticity. In this
study, heteroscedasticity is examined using the Glejser test, which investigates the relationship between the absolute
residuals and the independent variables. If the resulting significance value exceeds the 5% confidence threshold, the data
are considered free from heteroscedasticity problems.

2.4.3 Normality Test

According to [1], the normality test is conducted to determine whether the residuals of the regression model follow a
normal distribution, as required for valid statistical inference. A properly specified regression model generally produces
residuals that approximate a normal distribution. To evaluate this assumption, the Anderson-Darling test is applied at a
5% significance level. When the test yields a p-value greater than 5%, the residuals are regarded as normally distributed.

2.4.4 Autocorrelation Test

According to [1], the autocorrelation test examines whether residuals from one time period are correlated with
residuals from another. Autocorrelation, if present, indicates a violation of classical regression assumptions. In this study,
first-order autocorrelation is evaluated using the Durbin-Watson (DW) test, which is appropriate when the model
includes a constant term. Additionally, the Run Test—a nonparametric method—can be employed to assess whether the
sequence of residuals exhibits randomness or systematic correlation.

2.4.5 Significance Test

According to [2], in multiple regression analysis, there are several significance tests that are useful for measuring the
accuracy of the model, including the following:
1. Regression Model Significance Test
This test is conducted to examine whether a linear association exists between the response variable Y and the
predictor variables X3, X5, ... , X, or not. When the dependent variable is linearly influenced by the predictor variables,
the constructed regression model can be considered appropriate for describing the underlying relationship. The
following are the steps:
a. Hypothesis
Hy: 1 = B2 = - = Bx = 0 (The regression model is not appropriate)
Hjy: thereis at least onef; #, with j =1, 2, .., k (The regression model is appropriate)
b. Test statistic

0= ssEj(S:f];—n = %; SSR = le;l(?i - 17)2; SSE = 2?:1(?1' - ?1)2 (4)

c. Testcriteria

Hy RejeCted if Fo > Frapie = F(a;k;n—k—l) » OT Pygye < &

2. Test of Individual Regression Coefficient Significance

The test assesses whether each predictor exerts a measurable effect on the response variable. The steps are:
a. Hypothesis

Hy: Bj = 0 (x; t regression coefficient is not significant)

Hy: B; # 0, withj=1, 2, ..., k (x; t regression coefficient is significant)
b. Test statistic
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ty = E—i with Se(B;) = /62C;; (5)
se(B;)

n(y._9.)?
Where C;; is the diagonal element of(X'X)~! and 62 = ZE (Vi ¥)”
7] n—-k—1

c. Testcriteria

H, rejected if |t0| > teavie = Ya/2n-k-1) OT Dyaiue < @

2.5 Outlier Data

The effect of outliers in data analysis can be distinguished based on the origin of the outliers, namely those originating

from the response variable (youtliers; influence points) or originating from the independent variable (x-outliers; leverage
points) [3] .

In relation to regression analysis, outliers cause the following [4] :

1. Large residuals from the model

2. The variance in the data becomes large

3. The interval estimate has a wide range

In regression analysis, there are three types of outliers that affect the least squares estimation, namely:
a. Vertical Outlier

These observations represent cases that deviate substantially in the dependent variable while remaining within
the expected range of the predictors. Such vertical outliers can distort the results produced by the least squares
estimator.

. Good Leverage Point

These observations exhibit extreme values in the predictor variables, yet they lie close to the fitted regression line.
Although such good leverage points do not destabilize the least squares estimates, they may influence statistical
inference by increasing the estimated standard errors.

Bad Leverage Point

This type of observation displays extreme values in the predictor variables and lies far from the regression line.
Bad leverage points can substantially distort least squares estimates, influencing both the intercept and the slope
of the regression model.

Outlier identification methods are divided into two types: graphical methods, which rely solely on visualization and

are highly dependent on the researcher's perspective on the resulting graph, and statistical calculation methods. Several
methods for identifying outliers in an analysis are as follows:
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a. Scatterplot

This approach involves creating a plot of data for each observation i (i = 1, 2, ..., n). After a regression model is
fitted, a residual plot-graphing the residual e; against the predicted values ¥;-may also be examined. The presence
of one or more points that deviate markedly from the overall pattern of the data suggests the existence of outliers.

. Boxplot

This method uses quartiles and range to detect outliers. Quartiles 1, 2, and 3 divide the previously sorted data into
four parts. The interquartile range (IQR) is defined as the difference between quartiles 1 and 3, or IQR = Q3 — Q; .
Outliers are values less than 1.5*IQR for quartile 1 and values greater than 1.5*IQR for quartile 3.

Leverage Values Method

This approach examines the impact that each observation may have on the resulting parameter estimates, allowing
influential points to be identified. This can be seen from the distance of the X values of all observations. The
leverage value for simple linear regression can be determined as follows [5] :

1, (Xi=X)32
Laverage(hy) = T (nl—l)b)'%

(6)

where:

h;; : leverage of the i-th case

n :number of data

X; :value for case i

S2 :the squares n The case consists of the deviation X; s from the mean

X :meanof X

For observations involving more than one explanatory variable, the leverage measure is computed using the
matrix expression shown below:

H=XXX)1Xx' (7)

Where H is the hat matrix, the elements of thei diagonal of the hat matrix are the leverage values, and X is the
matrix X. The outlier approach is based on the cutoff value, and if the value h;; exceeds the cutoff value, it is detected
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as an outlier. The specified cutoff value is Zf , where n is the amount of data, and p is the number of parameters in

the regression equation formed, including the intercept [6] .

d. DFFITS Method (Difference Fitted Value FITS)
This method displays the change in the predicted value when the i-th case is removed from the standardized
research data [4] . The DFFITS calculation is as follows:

1

DFFITS = t, (%)E (8)

wheret; is Rstudent for case-i and h;; is the leverage value for case-i. Data is considered an outlier if the

value|DfFITS| > 2\[% with p is the number of parameters and n is the number of data observations [7] .

2.6 Robust Regression

In his book, [8] explains that one of the deviations that occurs when there are outliers is a violation of the assumption
of normality. Outliers should not be discarded without justification, as they may represent meaningful patterns or
information that cannot be obtained from the remaining observations. If an observation is known to be an outlier in a
study, the use of OLS will produce imperfect conclusions. Robust regression is used as an alternative. In general, robust
means strong. [6] explains that robust regression is able to reduce the influence of outliers compared to using MKT,
resulting in a strong estimator that is not affected by the presence of outliers. Using robust techniques, a regression model
can be constructed that lessens the impact of data points with unusually large residuals. Instead of eliminating these
observations, the method focuses on finding parameter estimates that align well with the bulk of the data, resulting in a
more dependable model

In robust regression, there are several estimation methods for estimating regression parameters, one of which is M
estimation introduced by Huber (1973) and Least Trimmed Squares (LTS) estimation introduced by Rousseeuw (1984).
In M-estimation, the estimator is obtained by finding the parameter values that minimize a specified function p of the
residuals, which serves as the basis for its robustness. Meanwhile, the LTS estimation method has the basic principle of
minimizing the sum of trimmed residual squares.

2.7 M-Estimation

According to [8], as a likelihood-based estimation technique, robust M-Regression determines its parameter values
through the minimization of a residual-related objective function. In the conventional MKT formulation, this objective
simplifies to minimizing the total of the squared residuals. Equation (9) is the MKT estimator according to [9] .

L i — xiB)? = X, €f 9)
Robust-M estimator, replacing e? in equation (9) with p(u;) where the value of u; can be seen in equation (10).

u; = 4 (10)

N

As a result, the estimation process for the Robust-M method consists of finding the parameter values that yield the
smallest value of the objective function described in equation (11)

Ship(u) = Xy p (2) = 2y p (22F) (11)
The function contributes to each residual under the condition that it must satisfy the following property:
1. p(w;) =20
2. p(0)=0

3. p(u) = p(—u;)
4. p(w;) = p(—w) for le;| = |ul
The formulation of the Robust-M estimator is provided in equation (12) [10] .

min )}, p(y;) = min Y-, p (%) =min}%, p (%) (12)

The M-estimator as a solution to equation (12) requires setting a scale to produce equation (13). The scale of the Robust
estimator is s, with the following formula:

__ median|e;—median(e;)| _ MAD (13)
- 0.6745 06745
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Tukey’s bisquares weighting function can be utilized as the chosen pfunction, with its formulation presented in equation
(14).

ut | uf
_ )2 Tt ulse
p(u;) = (14)

-, lu;l > ¢

2
U

The Tukey’s Bisquares weighting function provides better results in dealing with outliers than other weighting
functions. In equation (13), the median is applied because of its robustness to the presence of outliers. By incorporating
the constant 0.6745 into the computation, the resulting scale estimate sbecomes approximately unbiased when the
sample size nis sufficiently large.

To obtain a solution for equation (13), we compute the first partial derivative of p with respect to §;(j = 0,1,2...,p)

and impose the stationary conditions by equating these first-order partial derivatives to zero in equation (15). With ¥ =
p' and X;; being the i-th observation at the j-th point.

roxgw (225E) = 0 (15)

To obtain the solution, a weighting function is first defined, as expressed in equation (16).

yi—xl{ﬁ'
S

Itis known that u; = ? so that equation (16) can be rewritten as equation (17).

w(e;) =

2

=) [1- ()] md < (17)

0 » lwl >c

In this study, the Tukey bisquares weight is applied using a tuning constant cspecified as 4.685. After the Tukey's
Bisquares weighting is substituted into equation (9), the equation can be rewritten as equation (18).

X, xijwi(yi —xiB) =0 (18)
Equation (18) can be written in matrix form as equation (19).
Erobust = (X’WOX)_1X,W0y (19)

which refers to the diagonal matrix constructed from Tukey’s bisquares weights, where each diagonal entry is given by.
Equation (19) is known as the Weighted Least Squares (WLS) equation [9] .
The M-estimation algorithm can be seen from the description below:
a. Calculating the estimated § parameters using MKT
. Identifying potential outliers within the dataset

b

c. Compute the residual values e; = (y; — ¥;)

d median|e;—median(e;)| _ MAD
0.6745 "~ 06745

. Calculate the value 6 =

e. Calculating the value u; = 2

s}

Calculating the weighted value

w17, s
0,

lu;| > ¢
with:
u; :the value of the division of residual and the ntho i
¢ :thetuning constant that has been set to determine the level of robustness

w; :the weight value of thei

g. Calculate f the M-estimator residual using the Weighted Least Squares (WLS) method with weights w;

h. Repeat steps (d) until (g) to obtain the convergent value of f the estimated M, meaning that at iteration-i, the
estimated parameters will be the same as in the subsequent iteration.
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i. Perform a test to determine whether the independent variables have a significant effect on the dependent
variables using a simultaneous test that looks at the value F_;;cyateq and a partial test that looks at the value

Lealculated
The algorithm above is taken from [11] .

2.8 Least Trimmed Squares (LTS) Estimation

The equation for the LTS estimation method is as follows:

min Y1, ey (20)
R @
[12]

The LTS estimator possesses a high breakdown point, reaching up to 50%. The breakdown point indicates the
maximum proportion of contaminated observations that the estimator can tolerate before the fitted model becomes
unreliable. This method operates by minimizing the sum of the squared residuals for the best h observations.

The LTS estimation algorithm is as follows [13] :

Calculate the parameter estimates fi,;riq; Using the MKT method.

Calculate the residual valuese; using e; = (y; — #;) corresponding to Bim-n-a, .

Calculate the observed h using equation (24) with the e(zl-) value.

Performing calculations using equation (23).

Calculate the parameter estimates f,,,, using the MKT method from the calculated h observations.

Determine the residual sum of squares e? = (y; — 9;)? corresponding to the obtained Brew ,then calculate the sum
of Ry, Observations with the value ef;, .

Perform the calculation from equation (24) with the value h,,,.

Performing C-steps by repeating steps (e) to (g) until the objective function (ngl e(zi)) converges, meaning that at
iteration-i, the sum of residual squares and the parameter estimates will be the same as in the next iteration.

me a0 o

= o

3. RESULTS AND DISCUSSION

3.1 Data Description

This study uses 2021 per capita expenditure data as the dependent variable and uses poverty line, human
development index, average years of schooling, and expected years of schooling as independent variables. This data is
from 154 districts/cities on the island of Sumatra, obtained from the official BPS website. Data description was performed
to see the data profile for each variable, along with descriptive statistics of the research variables used in the case study.

Table 2. Descriptive Statistics of Data Variables.

Data Summary

Variable Minimum Maximum Range Average Variance
Y 6152 18506 12354 10919 4280669
X1 350452 860629 510177 509697 9316792976
X, 62.19 86.28 24.09 71.61 19.83548
X3 5.880 13.030 7.15 8.962 1.788573
X, 11.43 17.81 6.38 13.36 1.088898

Table 3. Descriptive Statistics of Standardized Data Variables.

Data Summary

Variable Minimum Maximum Range Average Variance
Y —2.3039 3.6672 59711 0 1
X1 -1.6498 3.6357 5.2855 0 1
X, —2.1156 3.2933 5.4089 0 1
X3 —2.3046 3.0417 5.3463 0 1
X4 —1.8484 4.2656 6.114 0 1

3.2 Least Squares Regression Analysis

The parameter estimation results are as follows:
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Table 4. Original Data Estimation Results.

Parameter Estimated Value

Intercept —2.14 x 10*
B, 2.40 x 1073
B, 6.51 x 102
Bs ~7.26 x 102
B, —6.72 % 102

R — Squared = 85.11%

Based on Table 4, parameter estimates were obtained to form an initial model using the least squares regression
method, namely:

Y =-214x10*+2.40 x 1073X; + 6.51 X 102X, — 7.26 X 102X; — 6.72 X 102X, + ¢ (22)
After obtaining the initial model with an R? value of 85.11%, it means that the independent variables, namely the
poverty line, human development index, average years of schooling, and expected years of schooling, can explain 85.11%

of the variance in the dependent variable, while the remaining 14.89% is explained by other variables not studied.

Table 5. Standardized Data Estimation Results.

Parameter Estimated Value

B 0.11210
B> 1.40084
B3 —0.46911
By —0.33876

R — Squared = 85.11%

From the information presented in Table 5, the regression model is estimated as follows:

Y =0.11210X; + 1.40084X, — 0.46911X; — 0.33876X, + ¢ (23)

3.3 Classical Assumption Test

An assessment of the classical regression assumptions was performed, encompassing tests for normality,
heteroscedasticity, multicollinearity, and autocorrelation. The findings from these evaluations are reported below:

Table 6. Results of Classical Assumption Tests.

Type of Test Statistical Value p-value Decision Conclusion
. . Data is not normally
Normality 1.5515 0.0005 Reject Hy distributed
Heteroscedasticity 2.6792 0.6129 Accept Hy No heteroscedasticity
- . X; =1.578,X, = 6,902 . .
Multicollinearity X3 = 6.909. X, = 2407 AllVIF <10  No multicollinearity
Autocorrelation 1.5391 0.0012 Reject H, Thereis
autocorrelation

3.4 Outlier Identification
Outliers were identified using the DFFITS test, assuming that if the value is|DFFITS| > 2\/% , then the data is

considered an outlier. This study has 154 data points, resulting in2 /% = 0.3603 . The data that are outliers in the

original data and standardized data are present in Table 7:
Table 7. Original Data and Standardized Data.

No DFFITS Value Absolute Value Decision
19 1.2578 1.2578

50 0.5139 0.5139

146 —0.6214 0.6214 Data
149 0.4980 0.4980 > 0.3603 is
150 0.7018 0.7018 an outlier
151 0.5262 0.5262

153 0.7683 0.7683
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Based on Table 7, using the original data and standardized data, it was found that observations 19, 50, 146, 149, 150,
151, and 153 were outliers. In accordance with the initial assumption, the 7 observations have a value of DFFITS >
0.3603 . Outliers can also be seen from the plot in Figure 1 as follows:

Influence Diagnostics for ZY

10 Threshold: 0.32

=
=
e

DFFITS

. ﬂ ] LT?jMwTWTmW? I 1? JENE I RN TTTM?TﬁﬂT‘L‘ﬁWjL?ﬁ &TH H
G I 0 L L

Observation

Figure 1. DFFITS Plot

3.5 Robust Regression Analysis with LTS Estimation

This study was conducted using robust regression with LTS estimation using R-studio software to facilitate the
analysis. The results obtained with the help of R-studio software are shown in Table 8 as follows:

Table 8. Output of the Robust Regression Using the LTS Estimator.

Original Data Standardized Data

Parameters Estimated Value
Intercept —1.80 x 10*
By 2.01x 1073 0.0938
B> 6.05 x 102 1.3029
Bs —5.76 x 102 —0.3725
Ba —7.76 x 102 —0.3914

Based on Table 8, the model for estimating LTS in the original data is:
Y = —0.000018 + 0.00201X; + 605X, — 576X5 — 776X, + ¢ (24)
Meanwhile, the model obtained by standardizing the data first is:
Y =0.0938X; +1.3029X, — 0.3725X3 — 0.3914X, + ¢ (25)
The model obtained must be tested through a simultaneous validation process, which is a simultaneous testing of all
parameters in the regression model. Simultaneous test give value 2.2 X 10716 and original data LTS significance test can

see at the table below.

Table 9. Original Data LTS Significance Test.

Partial Test .
Parameter Decision
thitung Pvalue
B 3.010 0.0031 Reject Hy
B 19.505 2x 10716  RejectH,
B3 —5.613 1.03x 1077 Reject Hy
Ba —9.956 2x 10716 Reject Hy
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3.5.1 Simultaneous Test of Original Data

1. Formulating hypotheses
Hy: 1 = B, = B3 = B, = 0 (There is no simultaneous effect of the independent variable on the dependent
variable)
Hy:B; # 0,for i = 1,2,3,4 (There is a simultaneous effect of the independent variables on the dependent variable)
2. Testlevel
The analysis is conducted using the F distribution at the 5% significance level.
3. Test statistic
KTRegression
Fcalculated KTError 291.6
4. Rejection criterion
RejeCt HO if Fcalculated > Ftable OT Pygrye < @
5. Conclusion
The value of F g cu1ateqa = 7.164 > Figpie and ppae < @ ,then Hy is rejected. This means that there is an influence
of the independent variable on the dependent variable simultaneously at the 5% significance level.

3.5.2 Partial Test of Original Data

All variables are found to significantly affect per capita expenditure based on the partial test results. The poverty line
variable has t.qcuiatea = 3-010 with pyg. = 0.0031 , the human development index variable has t.4;cuiatea = 19.505
with pyame = 2 X 10716, the expected years of schooling variable has t.qcyigrea = 5.613 with p_value = 1.03 x 1077,
and the average years of schooling variable has t,qcyiatea = 9.956 with p_value = 2 X 10716 . All p,,q;1, are smaller than
a = 5% so that H, is rejected for all parameters. The significance of the four estimated parameters demonstrates that
every predictor plays a meaningful role in explaining per capita expenditure. Consequently, the resulting model can be
regarded as valid and appropriate for analytical purposes.

3.5.3 Simultaneous Test of Standardized Data

1. Formulating the hypothesis
Hy: 1 = P2 = B3 = B4 = 0 (There is no simultaneous effect of independent variables on the dependent variable)
H:3B; # 0, for j = 1,2,3,4 (There is a simultaneous effect of independent variables on the dependent variable)
2. Testlevel
The distribution used is the F distribution with a significance level of 5%.
3. Test statistics
KTRegression
Fcalculated KTError 276
4. Rejection criterion
RejECt HO if Fcalculated > Ftable Or Pygiue < @
5. Conclusion
The value of Fegicuiatea = 276 > Fiapie and pyae < a, then Hy is rejected. This means that there is an influence of
the independent variable on the dependent variable simultaneously at the significance level of 5% .

3.5.4 Partial Test of Standardized Data

The four partial tests show that all variables, namely the poverty line (p,qe = 0,0031 ), human development index
(Pyame = 2 X 10716, expected years of schooling (pyqme = 1,03 X 1077 ), and average years of schooling (Pyqume = 2 X
1071¢), have py,q,,. smaller than o = 5%, so H, is rejected for each parameter. Thus, all regression coefficients (B4, 2, B3,
,and B,) are significant, meaning that each variable has a significant effect on per capita expenditure and the regression
model used is appropriate for explaining the relationship between these variables.

3.6 Robust Regression Analysis M Estimation

Table 10 below provides the summary of results obtained through the robust M-estimation regression procedure:

Table 10. Results of Robust M-Estimation Regression.

Original Data Standardized Data

Parameter Estimated Value
Intercept —20505.03
B 0.0023 0.1087
B 639.62 1.376
B3 —678.39 —0.4353
Ba —714.96 —0.3610

Based on Table 10, the model for estimating LTS in the original data is:
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Y =—20505.034+ 0.0023X; + 639.62X, — 678.39X; — 714.96X, + ¢ (26)
Meanwhile, the model obtained by standardizing the data first is:
Y =0.1087X; + 1.376X, — 0.4353X5; — 0.3610X, + ¢ (27)

The model obtained must be tested through a simultaneous validation process, which is a simultaneous testing of all
parameters in the regression model.

Table 11. M Significance Test of Original Data.

Partial Test

Parameter — _,  Decision
Lcalculated

Intercept 12.3956 Reject H,

By 3.0124 Reject H,

B 18.3100 Reject H,

Bs 5.8282 Reject H,

Ba 8.1192 Reject Hy

3.6.1 Partial Test of Original Data

The results of the significance test using M-standardized data are presented below:

Table 12. Significance Test of Standardized Data M.

Partial Test
Parameter Decision
tcalculated
B1 3.0071 Reject H,
B, 18.2157 Reject H,
B3 5.7584 Reject Hy
Ba 8.0899 Reject Hy

3.6.2 Partial Test of Standardized Data

The partial test results indicate that each independent variable exerts a statistically significant effect on per capita
expenditure at the 5% significance level. The poverty line variable has a value of t.4;cyiqtea = 3:0071 > 1.98, so that f3; is
significant. The human development index variable is also significant with t_g;cuiateq = 18.2157 > 1.98 . The average
years of schooling variable is also significant with t.4;cuiatea = 8.:0899 > 1.98. Furthermore, the expected years of
schooling variable has t.4icuiateqd = 5.7584, which exceeds t;qp. , SO B3 is significant. Therefore, given that all four
independent variables exert a statistically significant effect on per capita expenditure, the regression model is deemed
suitable for use.

3.7 Selection of the Best Estimation Model Using Residual Standard Error

Table 13. Residual Standard Error Values.

Residual Standard Error

LTS Estimation M-Estimation
Original Data Standardized Data Original Data Standardized Data
612.5 0.2961 722.6 0.332

Determination of the best estimation method from Robust regression related to solving outlier problems using the
LTS estimation method and M-estimation, as well as using original data and standardized data by comparing the Residual
Standard Error values of each method. The best estimation is the method that has the smallest residual standard error
value. The data in Table 13 reveal that the lowest residual standard error originates from the LTS estimation using
standardized data, among the two robust regression models. Therefore, LTS estimation based on standardized data
proves to be a valid robust regression technique to use in estimating regression parameters for per capita expenditure
data on the island of Sumatra in 2021.
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3.8 Model Interpretation

Based on the process of selecting the best model, we obtain a robust regression with standardized data and use
the selected LTS estimation as the best model. The model validation process using a partial test will form the following
LTS estimation robust regression equation model:

Y =0.1087X; + 1.376X, — 0.4353X; — 0.3610X, + ¢ (28)

The standardized robust regression model yields an R? of 88.53%, indicating that 88.53% of the variation in the
dependent variable—per capita expenditure—is accounted for by the poverty line, the human development index,
average years of schooling, and expected years of schooling. The remaining 11.47% is influenced by other factors not
included in this study.

The standardized data model shows that the regression coefficient for the poverty line variable (X;) is 0.1087. This
implies that, holding the other variables constant, a one-unit increase in the poverty line is associated with a 0.1087
increase in per capita expenditure. Since the coefficient is positive, it indicates a direct relationship between the poverty
line and per capita expenditure—meaning that as the poverty line rises, per capita expenditure also tends to increase.

The standardized model indicates that the human development index variable (X,) has a regression coefficient of
1.376. This suggests that, when all other variables are held constant, a one-unit rise in the human development index
corresponds to a 1.376 increase in per capita expenditure. The positive sign of the coefficient shows a direct relationship
between these variables—higher levels of the human development index are associated with higher per capita
expenditure.

The standardized model shows that the regression coefficient for the average years of schooling variable (X3) is -
0.4353. This indicates that, with the other variables held constant, a one-unit increase in average years of schooling is
associated with a 0.4353 decrease in per capita expenditure. The negative coefficient reflects an inverse relationship
between average years of schooling and per capita expenditure—meaning that lower levels of average schooling
correspond to higher per capita expenditure.

The standardized model indicates that the regression coefficient for the expected years of schooling variable (X,) is -
0.3610. This means that, when the other variables are held constant, a one-unit increase in expected years of schooling
is associated with a 0.3610 decrease in per capita expenditure. The negative coefficient reflects an inverse relationship
between expected years of schooling and per capita expenditure—where shorter expected schooling durations
correspond to higher levels of per capita expenditure.

4. CONCLUSION

This study compares the Least Trimmed Squares (LTS) and M-estimation robust regression methods to model per
capita expenditure in Sumatra. The results show that LTS estimation applied to standardized data yields the smallest
residual standard error, indicating that it provides the most reliable parameter estimates in the presence of outliers.

The empirical findings reveal that the poverty line, human development index, average years of schooling, and
expected years of schooling have statistically significant effects on per capita expenditure at the 5% significance level.
This indicates that socioeconomic and educational factors play a crucial role in explaining regional variations in per capita
expenditure levels across districts and cities in Sumatra.

These findings highlight the importance of applying robust regression techniques when socioeconomic data contain
outliers. The proposed approach can be used as a reference for future studies involving regional welfare indicators and
can assist policymakers in understanding the determinants of per capita expenditure.
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