Main Article Content

Abstract

Indonesia is one of the countries that has a variety of fruits cultivated. One of them is the pineapple fruit. Various pineapple-based products such as pineapple juice, canned foods, pineapple jam, etc. The high demand for pineapples presents an opportunity for companies to increase pineapple product processing. The increase in pineapple productivity is influenced by several factors, one of which is the extent of land and the type of pineapple produced. To improve pineapple productivity, it can be done by classifying the types of pineapples based on productive and non-productive categories. The purpose of this classification is to enable farmers or plantation managers to allocate resources more efficiently by providing more intensive care for productive category pineapples. The classification method that can be used to classify productive and non-productive pineapples is the Classification and Regression Tree (CART) algorithm. The CART method is a method that produces decision tree models that are used to solve classification and regression problems. This research uses the CART method to classify pineapple productivity. The research results obtained accuracies, sensitivities, specificities, and precisions of 97.06%; 92.31%; 100%; 100% respectively. Meanwhile, the AUC obtained is 0.962 which indicates that the model is very good at predicting pineapple productivity correctly.

Keywords

CART Classification Peneapple Prediction Productivity

Article Details

How to Cite
Aprihartha, A., Zulhandi Putrawan, Dicky Zulhan, & Fatma Ahardika Nurfaizal. (2024). Klasifikasi Produktivitas Buah Nanas Menggunakan Algoritma Classification and Regression Tree (CART) . Diophantine Journal of Mathematics and Its Applications, 3(1), 64–70. https://doi.org/10.33369/diophantine.v3i1.34193

References

  1. H. Ikram and M. Apriyani, "Faktor-Faktor yang Mempengaruhi Produksi Nanas di Plantation Group 1 PT Great Giant
  2. Pineapple," Artikel Ilmiah Mahasiswa, 2018.
  3. A. V. Veettil and A. K. Mishra, "Quantifying thresholds for advancing impact-based drought assessment using
  4. classification and regression tree (CART) models," Journal of Hydrology, vol. 625, pp. 129966, 2023.
  5. M. M. Ghiasi, S. Zendehboudi, and A. A. Mohsenipour, "Decision tree-based diagnosis of coronary artery disease: CART
  6. model," Computer methods and programs in biomedicine, vol. 192, pp. 105400, 2020.
  7. H. R. Varian, "Big data: New tricks for econometrics," Journal of Economic Perspectives, vol. 28, no. 2, pp. 3-28, 2014.
  8. R. Chairunisa and W. Astuti, "Perbandingan CART dan Random Forest untuk Deteksi Kanker berbasis Klasifikasi Data
  9. Microarray," Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 5, pp. 805-812, 2020.
  10. F. D. Savitri, "Penerapan Metode Cart Dalam Memprediksi Penjualan Produk Fast Moving Dan Slow Moving," Journal
  11. of Informatics, Electrical and Electronics Engineering, vol. 1, no. 4, pp. 119-125, 2022.
  12. K. Amanda, D. Saripurna, & M. Z. Siambaton, "Penerapan Algoritma Cart dalam Penentuan Jurusan Siswa di SMA: Studi
  13. Kasus SMA Negeri 2 Perbaungan," Hello World Jurnal Ilmu Komputer, vol. 2, no. 4, pp. 169-177, 2024.
  14. M. A. Hasanah, S. Soim, & A. S. Handayani, "Implementasi CRISP-DM Model Menggunakan Metode Decision Tree
  15. dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir," Journal of Applied Informatics and
  16. Computing, vol. 5, no. 2, pp. 103-108, 2021.
  17. P. Sulistiawaty & N. Nurahman, "Klasifikasi Masa Awal Panen Sawit pada PT. Mustika Sembuluh Menggunakan
  18. Algoritma Classification and Regression Tree” Jurnal Tekinkom (Teknik Informasi dan Komputer), vol. 6, no. 2, pp.
  19. -566, 2023.
  20. R. B. Rambe, "Klasifikasi Nanas Dengan Menggunakan Algoritma Naïve Bayes Classification Pada Balai Penyuluhan
  21. Pertanian (BPP) Panai Tengah," Doctoral dissertation, Universitas Islam Negeri Sumatera Utara Medan, Medan, 2022.
  22. M. A. Bouke, A. Abdullah, J. Frnda, K. Cengiz, & B. Salah, "BukaGini: A Stability-Aware Gini Index Feature Selection
  23. Algorithm for Robust Model Performance," IEEE Access, vol. 11, pp. 59386-59396, 2023.
  24. M. A. Aprihartha, F. Astutik, and N. Sulistianingsih, "Comparison of Naïve Bayes, CART, dan CART Adaboost Methods
  25. in Predicting Tire Product Sales," Jurnal Matematika, Statistika dan Komputasi, vol. 20, no. 3, pp. 596-605, 2024.
  26. O. Z. Maimon and L. Rokach, "Data mining with decision trees: theory and applications," 1st ed. World Scientific,
  27. M. A. Aprihartha, J. Prasetya, and S. I. Fallo, "Implementasi CART-Real Adaboost dalam Memprediksi Minat Pelanggan
  28. Membeli Sepatu," Jurnal EurekaMatika, vol. 12, no. 1, pp. 35-46.
  29. R. G. Whendasmoro & J. Joseph, "Analisis Penerapan Normalisasi Data Dengan Menggunakan Z-Score Pada Kinerja
  30. Algoritma K-NN," JURIKOM (Jurnal Riset Komputer), vol. 9, no. 4, pp. 872-876, 2022.
  31. M. A. Aprihartha, T. N. Alam, and M. Husniyadi, "Perbandingan Metrik Euclidean dan Metrik Manhattan untuk K-
  32. Nearest Neighbors dalam Klasifikasi Kismis," Jurnal Ilmu Komputer dan Informatika, vol. 4, no. 1, pp. 21-30, 2024.
  33. J. Prasetya, S. I. Fallo, and M. A. Aprihartha, "Stacking Machine Learning Model for Predict Hotel Booking
  34. Cancellations," Jurnal Matematika, Statistika dan Komputasi, vol. 20, no. 3, pp. 525-537, 2024.
  35. M. A. Aprihartha, "Implementasi CART-Real Adaboost dalam Memprediksi Minat Pelanggan Membeli Sepatu," Jurnal
  36. EurekaMatika, vol. 12, no. 1, pp. 35-46, 2024.
  37. M. A. Aprihartha, "Penyelesaian Masalah Ketidakseimbangan Data Melalui Teknik Oversampling dan Undersampling
  38. pada Klasifikasi Siswa Tidak Naik Kelas," Jurnal Teknik Ibnu Sina (JT-IBSI), vol. 9, no. 1, pp. 43-52, 2024.
  39. T. T. Maskoen and A. Masthura, "Nilai Area Under Curve dan Akurasi Neutrophil Gelatinase Associated Lipocalin
  40. untuk Diagnosis Acute Kidney Injury pada Pasien Politrauma di Instalasi Gawat Darurat RSUP dr. Hasan Sadikin
  41. Bandung," Maj Anest dan Crit Care, vol. 35, no. 3, pp. 158-164, 2017.