
KONSERVASI HAYATI

Vol. 21 No. 2. Oktober 2025 p-ISSN: 0216-9487; e-ISSN: 2722-1113

Available Online at: https://ejournal.unib.ac.id/havati/issue/view/2153

This is an open access article under the CC-BY-SA international license.

Karakteristik Habitat Peneluran dan Proses Penetasan Semi Alami Telur Penyu (Chelonia mydas) di Kawasan Konservasi Penyu Pantai Pangumbahan, Sukabumi

Solihat Rahmawati¹, Meilisha Putri Pertiwi^{1*}, Lufty Hari Susanto¹, Ragil M. Pratama²

¹Prodi S1 Pendidikan Biologi, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Pakuan, Indonesia, 16129

²Kawasan Konservasi Penyu Pantai Pangumbahan, Indonesia, 43376

*Corresponding author: meilisha.putri@unpak.ac.id

Submitted: Revised: Accepted: Published:

03 July 2025 12 November 2025 15 November 2025 21 November 2025

ABSTRAK

Penyu hijau (Chelonia mydas) adalah salah satu spesies penyu yang termasuk dalam keluarga Cheloniidae. Kesesuaian habitat peneluran penyu hijau akan mendukung keamanan dan kelangsungan hidup penyu. Pantai Pangumbahan, Sukabumi merupakan salah satu habitat peneluran penyu hijau yang perlu dijaga kelestariannya. Penelitian ini bertujuan untuk mengetahui karakteristik habitat dan penetasan semi alami telur penyu hijau di Pantai Pangumbahan, Sukabumi. Metode yang digunakan adalah *purposive sampling* dengan teknik observasi dan survei lapangan. Hasil menunjukkan Pantai Pangumbahan merupakan habitat yang sesuai bagi penyu hijau, dengan lebar pantai berkisar antara 26-61 m dan kemiringan rata-rata 6,59%, suhu rata-rata 29°C, kelembaban rata-rata 47,17%. Pasir di pantai ini berukuran 0,150 mm, tergolong pasir halus, dengan pH rata-rata 7,0 yang termasuk kategori netral. Selain itu, vegetasi yang tumbuh di sekitar sarang peneluran meliputi pandan laut (Pandanus odorifer), rumput lari-lari (Spinifex littoreus), dan katang-katang (Ipomoea pes-caprae), yang berperan dalam menjaga kestabilan ekosistem pantai. Terdapat juga proses penetasan semi alami mencakup pengamatan dan relokasi, inkubasi telur, pemeliharaan sarang, pembongkaran sarang, rekapitulasi data dan pelepasan tukik. Temuan ini memberikan kontribusi penting bagi pengelolaan konservasi penyu hijau, khususnya dalam optimalisasi teknik penetasan semi alami sebagai strategi pelestarian yang berkelanjutan.

Kata Kunci: Chelonia mydas, Habitat, Konservasi, Pantai Pangumbahan, Proses penetasan

ABSTRACT

Green turtles (Chelonia mydas) are one of the sea turtle species belonging to the Cheloniidae family. The suitability of nesting habitats plays a crucial role in ensuring the safety and survival of green turtles. Pangumbahan Beach, located in Sukabumi, serves as one of the important nesting sites for green turtles and requires conservation efforts to maintain its ecological integrity. This study aims to identify the habitat characteristics and semi-natural hatching process of green turtle eggs at Pangumbahan Beach. The method used was purposive sampling, employing observation and field survey techniques. The results indicate that Pangumbahan Beach provides a suitable habitat for green turtles, characterized by a beach width ranging from 26 to 61 meters, an average slope of 6.59%, an average temperature of 29 °C, and an average humidity of 47.17%. The sand size is 0.150 mm, classified as fine sand, with a neutral pH of 7.0. Vegetation surrounding the nesting sites includes Pandanus odorifer, Spinifex littoreus, and Ipomoea pes-caprae, which contribute to the stability of the coastal ecosystem. The semi-natural hatching process observed includes monitoring and relocation, egg incubation, nest maintenance, nest excavation, data recording, and hatchling release. These findings provide valuable insights for green turtle conservation management, particularly in enhancing semi-natural hatching techniques as a sustainable strategy for species preservation.

Keywords: Chelonia mydas, Habitat, Conservation, Pangumbahan Beach, Hatching Process

How to cite:

Rahmawati, S., Pertiwi, M.P., Susanto, L.H., & Pratama, R.M. (2025). Karakteristik habitat peneluran dan proses penetasan semi alami telur penyu (*Chelonia mydas*) di kawasan konservasi penyu Pantai Pangumbahan, Sukabumi. *Konservasi Hayati*, 21(2), 148-165.

DOI: https://doi.org/10.33369/hayati.v21i2.43191

PENDAHULUAN

Penyu laut termasuk ke dalam kelas Reptilia yang saat ini hanya tersisa tujuh spesies dari sekitar 30 spesies yang pernah tercatat secara historis. Enam spesies di antaranya hidup di perairan Indonesia (Yusra *et al.*, 2022; Putriani *et al.*, 2025). Penyu hijau (*Chelonia mydas*) menjadi sorotan konservasi karena statusnya sebagai spesies terancam punah (*Endangered*) menurut *IUCN Red List* (IUCN, 2024), dengan populasi yang terus menurun akibat kombinasi ancaman ekologis dan antropogenik. Faktor seperti abrasi pantai, kenaikan suhu pasir yang memengaruhi rasio jenis kelamin tukik (Winarto & Azahra, 2022), penggunaan alat tangkap tidak selektif, pencemaran cahaya, serta perburuan liar (Suryawan & Tehupeiory, 2023), menyebabkan penurunan populasi yang signifikan, termasuk di Pantai Pangumbahan yang mengalami penurunan sekitar 75 - 80% dalam rentang 2020 hingga 2024 menurut wawancara dengan petugas konservasi lokal. Masalah ini menunjukkan urgensi perlindungan habitat peneluran sebagai fokus utama penelitian konservasi penyu hijau.

Upaya mitigasi dilakukan melalui kebijakan nasional seperti Pasal 21 ayat (2) huruf e UU No. 5 Tahun 1990 yang melarang kepemilikan dan perdagangan telur penyu, diperkuat dengan PP No. 7 Tahun 1999 dan KEPMEN KP No. 65 Tahun 2022 tentang Rencana Aksi Nasional (RAN) Konservasi Penyu. Meskipun berbagai regulasi telah ditetapkan, praktik ilegal seperti pengambilan telur penyu masih menjadi tantangan serius dalam upaya konservasi. Untuk mengatasi hal ini, pendekatan zonasi konservasi yang diterapkan di kawasan Pantai Pangumbahan menjadi solusi yang relevan dan strategis. Zonasi memungkinkan pembagian wilayah berdasarkan tingkat perlindungan dan aktivitas yang diizinkan, sehingga pengawasan dapat difokuskan pada area rawan pelanggaran. Kawasan ini terbagi ke dalam 3 zona, yaitu zona inti, zona penyangga, dan zona pelayanan. Zona

penyangga dan pelayanan berfungsi sebagai pelindung bagi zona inti, sekaligus mendukung kelangsungan upaya konservasi penyu secara berkelanjutan (Waworuntu & Herlambang, 2019). Zona inti difokuskan untuk perlindungan penuh terhadap aktivitas peneluran, sementara Zona penyangga mencakup sekitar 35% aktivitas peneluran dan menjadi lokasi penerapan teknik penetasan semi alami serta pengawasan aktif (Fitri & Herawati, 2023). Strategi ini juga sejalan dengan target *Sustainable Development Goals* (SDGs) 14 tentang pelestarian ekosistem laut dan pengelolaan sumber daya kelautan secara berkelanjutan, yang menekankan pengelolaan wilayah konservasi berbasis ilmiah dan partisipasi (Sari *et al.*, 2020).

Berdasarkan penelitian Pertiwi & Lathifah (2018), Pantai Pangumbahan Sukabumi memiliki karakteristik yang memenuhi sebagai habitat peneluran penyu hijau. Karakteristik ini berupa vegetasi *Pandanus tectorius* yang jumlahnya mayoritas, kemiringan pantai, ukuran pasir, serta kondisi abiotik yang mendukung habitat peneluran. Namun seiring berjalannya waktu, Pantai Pangumbahan juga semakin ramai oleh aktivitas antropogenik. Selain itu, ancaman predator alami serta upaya pencurian juga kerap kali terjadi (Lasmi & Cahyaningtias, 2021; Falih *et al.*, 2025). Oleh karenanya perlu dilakukan *monitoring* kembali terkait karakteristik habitat peneluran penyu di Pantai Pangumbahan. Selain itu perlu ditambah mengenai optimalisasi teknis penetasan telur penyu karena masih minimnya data untuk hal ini.

Secara teoretis, penyu hijau memilih habitat peneluran dengan karakteristik tertentu, seperti pantai landai yang jauh dari pasang, substrat pasir halus yang memudahkan penggalian sarang, pantai dengan kemiringan yang landai memiliki intrusi udara laut yang cukup jauh, sehingga sarang yang mendapatkan intrusi udara laut secara terus menerus dapat meningkatkan kelembaban sarang yang memicu terjadinya pembusukan telur (Afifah *et al.*, 2019). Upaya *monitoring* karakteristik habitat peneluran penyu merupakan bentuk awal tindakan konservasi. Konservasi berarti melindungi, melestarikan, serta memelihara daya dukung dan kemampuan lingkungan. Maka dari itu, tujuan penelitian ini adalah untuk mengetahui karakteristik habitat dan penetasan semi alami telur penyu hijau di Pantai Pangumbahan, Sukabumi.

METODE

Penelitian ini dilaksanakan selama rentang waktu 24 Desember 2024 hingga 24 Februari 2025. Lokasi penelitian mencakup habitat bertelur penyu hijau yang tersebar di area seluas 58,43 hektar, meliputi kawasan antara Kehutanan dan Pantai Cibuaya, serta wilayah konservasi Penyu Pantai Pangumbahan yang terletak di Desa Pangumbahan, Kecamatan Ciracap, Kabupaten Sukabumi, Provinsi Jawa Barat (Gambar 1).

Pengumpulan data menggunakan metode *purposive sampling* dengan teknik observasi dan survei lapangan (Desanti & Junianto, 2023; Rahman *et al.*, 2023). Pertimbangan yang digunakan untuk menentukan pos pengambilan sampel dan identifikasi vegetasi adalah panjang pantai dan intensitas peneluran penyu di Pantai Pangumbahan. Pada kawasan konservasi penyu Pantai Pangumbahan terdapat 6 pos pemantauan. Sampel penelitian

diambil dari 6 pos habitat bertelur yang tersebar di sepanjang garis pantai sepanjang ± 2.300 meter. Telur penyu hijau yang dikumpulkan dari masing-masing pos kemudian direlokasi ke sarang semi alami. Letak sarang semi alami yaitu di ruang terbuka tanpa atap, yang dilakukan di kawasan konservasi Penyu Pantai Pangumbahan sebagai bagian dari upaya perlindungan dan pemantauan terhadap keberhasilan penetasan.

Gambar 1. Peta Lokasi Penelitian

Parameter yang diukur meliputi kemiringan pantai yang dilakukan dengan menarik tali secara tegak lurus dari batas vegetasi hingga titik pasang air tertinggi. *Roll meter* digunakan untuk mengukur panjang horizontal, tongkat kayu 2 meter sebagai penanda vertikal, dan waterpass untuk menjaga kelurusan. Panjang tali dan tinggi tongkat dicatat untuk menghitung kemiringan pantai, lebar pantai yang dilakukan dari titik pasang tertinggi hingga batas vegetasi terluar, suhu dan kelembaban sarang dilakukan dengan menggali pasir hingga kedalaman sekitar 30 cm, lalu hygrometer dimasukkan dan dibiarkan selama satu menit. Setelah itu, suhu dan kelembaban dibaca langsung dari alat, ukuran butiran pasir dengan mengambil sampel pasir 250 gram, dimasukkan ke plastik berlabel, lalu dianalisis di laboratorium menggunakan saringan bertingkat (sieve shaker), pH pasir sarang dilakukan dengan menggunakan soil tester yang ditancapkan pada dasar sarang selama kurang lebih 1 menit, serta jenis vegetasi pantai menggunakan metode jelajah dengan melihat kemunculan vegetasi di sekitar sarang penyu.

Pengambilan data mengenai proses penetasan telur dilakukan melalui observasi langsung mengikuti Standar Operasional Prosedur (SOP) tata kelola konservasi penyu di kawasan tersebut. Observasi ini bertujuan untuk mencatat aktivitas penyu hijau selama periode penetasan. Data yang dicatat berupa total jumlah telur yang dipindahkan ke sarang semi lama, mencatat waktu penanaman telur dan masa inkubasi.

1. Habitat Peneluran Penyu Hijau (Chelonia mydas) Kemiringan Pantai

Analisis data untuk memperoleh kemiringan pantai menggunakan rumus trigonometri (Ghalib *et al.*, 2020):

Tan
$$\alpha = (x/v)$$

Atau

Kemiringan (%) =
$$({}^{y}/_{x})$$
 x 100 %

Keterangan:

a (%): Sudut yang dibentuk (°) / (%)

x : Panjang tongkat berskala 2 meter

y : Jarak datar total pantai (m)

Berdasarkan kategori kemiringan pantai oleh Damanhuri *et al.* (2019), dapat dilihat pembagian kategori kemiringan pantai pada Tabel 1.

Tabel 1. Pembagian Kategori Kemiringan Pantai

Kategori	Kemiringan Pantai
Datar	$0-2\% (0^{\circ}-1.14^{\circ})$
Landai	$2-7\% (1^{\circ}-5^{\circ})$
Bergelombang	$7-15\% (5^{\circ}-9^{\circ})$
Curam	15 – 25 % (9° - 14°)
Sangat Curam	25 – 45 % (14° - 24°)
Terjal	45 (>24°)

Suhu Rata-Rata

Menurut Kasmeri *et al.* (2022), analisis data untuk memperoleh suhu rata-rata menggunakan rumus :

Suhu rata-rata =
$$\frac{T1 + T2 + T3 + T4 + T5 + T6}{6}$$

Keterangan:

T1 = Suhu pos 1

T2 = Suhu pos 2

T3 = Suhu pos 3

T4 = Suhu pos 4

T5 = Suhu pos 5

T6 = Suhu pos 6

2. Proses Penetasan Semi Alami

Tahapan pengambilan data difokuskan pada proses penetasan telur penyu hijau semi alami dengan seluruh rangkaian kegiatan ini mengikuti Standar Operasional Prosedur (SOP) tata kelola konservasi penyu di kawasan tersebut:

a) Pengamatan dan relokasi telur

- b) Inkubasi telur
- c) Pemeliharaan sarang penetasan
- d) Pembongkaran sarang
- e) Rekapitulasi data
- f) Pelepasan tukik

HASIL DAN PEMBAHASAN

Penyu hijau menghadapi ancaman dari berbagai sisi, baik secara ekologis maupun antropogenik. Secara ekologis, penyu hijau rentan terhadap abrasi dan dampak perubahan iklim seperti meningkatnya suhu pasir yang memicu dominasi tukik betina (Winarto & Azahra, 2022). Sementara itu, ancaman antropogenik meliputi penggunaan alat tangkap tidak selektif seperti jaring *trawl* dan *gill net* yang kerap menyebabkan penyu tertangkap secara tidak sengaja (*bycatch*), serta paparan cahaya dan aktivitas perburuan ilegal yang dapat mengganggu proses peneluran penyu hijau (Rakhma *et al.*, 2024). Selain itu, faktorfaktor yang berperan penting agar lingkungan tersebut ideal bagi penyu untuk bertelur meliputi kemiringan pantai, lebar pantai, suhu dan kelembaban sarang, struktur pasir sarang, pH pasir sarang, dan vegetasi pantai.

1. Habitat Peneluran Penyu Hijau

Kondisi fisik habitat peneluran penyu di Pantai Pangumbahan menunjukkan bahwa terdapat sejumlah syarat umum yang harus dipenuhi agar lingkungan tersebut ideal bagi penyu untuk bertelur. Faktor-faktor yang berperan penting meliputi kemiringan pantai, lebar pantai, suhu dan kelembaban sarang, struktur pasir sarang, pH pasir sarang, dan vegetasi pantai.

Tabel 2. Ukuran Lebar Pantai Pangumbahan, Sukabumi

Parameter	Lebar Pantai (m)
Pos 1	26
Pos 2	61
Pos 3	60
Pos 4	27,2
Pos 5	28,3
Pos 6	27,5

Berdasarkan hasil pengukuran yang diperoleh dari ke 6 pos diketahui lebar Pantai Pangumbahan berkisar 26 - 61 m. Pengukuran lebar pantai dilakukan dari titik pasang tertinggi hingga batas vegetasi terluar. Titik lebar intertidal mencakup area dari pasang tertinggi hingga batas vegetasi (Rismawati *et al.*, 2022). Data hasil pengukuran lebar pantai tercantum dalam Tabel 2.

Hasil pengukuran dari enam pos menunjukkan bahwa lebar Pantai Pangumbahan berkisar antara 26-61 m, sesuai dengan kriteria pantai peneluran penyu yang ideal, yaitu antara 20-80 m (Pratama & Romadhon, 2020). Penelitian Swadarma (2018) juga menyebutkan bahwa meskipun Pantai Rantau Sialang memiliki lebar kurang dari 20 m, pantai tersebut tetap menjadi habitat peneluran penyu karena air pasang tidak mencapai

sarang. Ukuran area bersarang berperan penting dalam membantu penyu hijau menemukan lokasi yang aman untuk bertelur, dengan kecenderungan memilih pantai yang kering dan tidak terdampak pasang surut. Lokasi yang jauh dari dampak pasang surut sangat penting untuk mencegah genangan air, karena sarang yang terendam berisiko menyebabkan telur penyu gagal menetas.

Kemiringan Pantai

Hasil pengukuran di Pantai Pangumbahan menunjukkan bahwa kemiringan pantai berada dalam kisaran 2,03-20%, dengan rata-rata kemiringan sebesar 6,59%. Berdasarkan data tersebut, Pantai Pangumbahan tergolong sebagai pantai landai. Pos 6 mencatat kemiringan tertinggi, yaitu 20%, sementara pos 2 memiliki kemiringan terendah sebesar 2,03%. Data pengukuran kemiringan pantai tercantum dalam tabel 4.

Tabel 3. Kemiringan	Pantai	Pangumha	han	Sukahumi
Tabel J. Keminingan	rantai	rangumba	man,	Sukabullii

Parameter	Kemiringan Pantai (%)	Kategori
Pos 1	5	Landai
Pos 2	2,03	Landai
Pos 3	2,42	Landai
Pos 4	5,15	Landai
Pos 5	4,95	Landai
Pos 6	20	Curam
Rata-rata	6,59	Landai

Kemiringan pantai berpengaruh pada kemampuan penyu untuk mencapai lokasi bertelur, di mana semakin curam kemiringannya, semakin besar energi yang dibutuhkan. Penelitian oleh Marselino *et al.* (2024), di Pulau Gelasa menunjukkan bahwa penyu cenderung memilih area dengan landai karena memberikan stabilitas substrat dan memudahkan akses dari garis air ke titik peneluran. Selama periode penelitian, tidak ditemukan aktivitas penyu naik ke darat di Pos 6. Namun, berdasarkan informasi dari petugas konservasi, pada musim peneluran tertentu penyu kadang masih memilih lokasi tersebut untuk bertelur. Hal ini menunjukkan bahwa meskipun kemiringan menjadi salah satu faktor yang memengaruhi pemilihan lokasi sarang, penyu tetap dapat bertelur di area yang relatif curam apabila kondisi lingkungan lainnya mendukung, seperti tekstur pasir, vegetasi, dan minimnya gangguan predator (Syaputra *et al.*, 2020).

Suhu dan Kelembaban

Berdasarkan hasil pengukuran dari enam pos, suhu sarang di Pantai Pangumbahan berkisar antara 27-30°C dengan rata-rata 29°C, sementara kelembaban berada dalam rentang 40-52% dengan rata-rata 47,17%. Pengukuran suhu pasir dilakukan dengan menggali hingga kedalaman sekitar 50 cm agar menyerupai kondisi alami sarang penyu, sehingga data yang diperoleh mencerminkan lingkungan sebenarnya. Data hasil pengukuran suhu dan kelembaban terdapat pada Tabel 4.

Tabel 4. Rata-Rata Parameter Suhu dan Kelembaban

Pos	Suhu (°C)	Kelembaban (%)
1	27	52
2	29,5	47
3	29,7	44
4	29,3	49
5	28,5	51
6	30	40
Rata-rata	29	47,17

Suhu sarang di Pantai Pangumbahan berkisar antara 27-30°C dengan rata-rata 29°C, menunjukkan kondisi ideal bagi inkubasi telur penyu hijau. Suhu berpengaruh pada rasio jenis kelamin tukik, di mana suhu di atas 28°C cenderung menghasilkan betina, sedangkan suhu lebih rendah menghasilkan jantan (Pratama & Romadhon, 2020). Perubahan suhu terjadi hingga kedalaman 15 cm sebelum akhirnya stabil (Musyadik & Fathnur, 2020). Intensitas cahaya yang diterima pasir memengaruhi fluktuasi suhu, sehingga penyu lebih sering bertelur pada malam hari untuk mendapatkan kondisi optimal (Rachman *et al.*, 2019). Kelembaban pasir di Pantai Pangumbahan berkisar antara 40-52%, dengan rata-rata 47,17%, berada dalam kisaran ideal bagi penyu hijau. Kelembaban yang melebihi 60% meningkatkan risiko kegagalan penetasan akibat pertumbuhan mikroorganisme. Penyu cenderung memilih pantai dengan kemiringan landai dan kelembaban kering untuk bertelur. Suhu dan kelembaban memiliki hubungan berlawanan, di mana suhu malam lebih rendah meningkatkan kelembaban, sedangkan suhu siang lebih tinggi menyebabkan kelembaban turun. Kondisi ini membuat penyu lebih sering bertelur saat malam hari, ketika suhu lebih sejuk dan kelembaban udara lebih tinggi (Septiana *et al.*, 2019).

Ukuran Pasir

Pasir kuarsa menjadi salah satu elemen utama yang menentukan karakteristik visual sarang penyu saat bertelur. Dari hasil yang didapat ukuran partikel pasir Pantai Pangumbahan didominasi pasir halus. Hasil pengukuran struktur pasir dapat dilihat pada Tabel 5.

Tabel 5. Ukuran Pasir di Pantai Pangumbahan, Sukabumi

Pos	Ukuran (mm)	Partikel
1	0,150	Pasir halus
2	0,150	Pasir halus
3	0,150	Pasir halus
4	0,150	Pasir halus
5	0,150	Pasir halus
6	0,150	Pasir halus

Pasir di Pantai Pangumbahan berukuran 0,150 mm dan termasuk kategori pasir halus, yang membantu menjaga kestabilan suhu sarang penyu (Erlangga *et al.*, 2021; Triacha *et al.*, 2021; Mufida *et al.*, 2023). Penyu hijau lebih memilih pasir halus karena lebih mudah digali, sementara pasir yang terlalu halus dapat menyebabkan sarang longsor (Rismawati *et al.*, 2022). Komposisi pasir di lokasi peneluran umumnya 90% pasir, sisanya debu dan liat, dengan ukuran butiran halus hingga sedang (Alfred *et al.*, 2020). Pasir berbutir kasar kurang efektif dalam mempertahankan suhu sarang dan dapat menghambat perkembangan embrio penyu (Septiana *et al.*, 2019).

pH Pasir

Berdasarkan hasil pengukuran pH pasir di enam pos, nilai yang diperoleh menunjukkan bahwa pasir tergolong dalam kategori netral, sehingga sesuai untuk lokasi peneluran penyu. Data hasil pengukuran pH pada setiap sarang terdapat pada Tabel 6.

Pos	рН	Kategori
1	7,0	Netral
2	7,0	Netral
3	7,0	Netral
4	7,0	Netral
5	7,0	Netral
6	7,0	Netral

Hasil pengukuran pH pasir di enam pos menunjukkan bahwa pH pasir berada dalam kategori netral, pH 6,5 - 7,5 sesuai dengan kondisi ideal bagi tempat peneluran penyu (Pratama & Romadhon, 2020). Penyu cenderung memilih pantai dengan pH netral untuk membuat sarang, karena pH asam dapat meningkatkan kelarutan logam seperti Fe dan Mn, yang berpotensi mengganggu kesehatan tukik dan perkembangan embrio (Alwan *et al.*, 2024). Sementara itu, pasir dengan pH basa menyebabkan kelembaban tinggi pada sarang, yang dapat merusak telur dan menghambat penetasan (Pratama & Romadhon, 2020).

Vegetasi Pantai

Berdasarkan hasil observasi di kawasan Pantai Pangumbahan, dijumpai vegetasi di sepanjang tempat pengamatan saat dilakukan penelitian yang terdiri dari herba, semak, dan pohon. Spesies tumbuhan yang terdapat pada pos sekitar bekas sarang peneluran penyu di kawasan Pantai Pangumbahan dapat dilihat pada Tabel 7.

Tabel 7. Spesies Vegetasi yang Ditemukan di Sekitar Sarang Peneluran

Famili	Nama lokal	Nama ilmiah	Habitus	Pos
Fabaceae	Kacang laut	Canavalia rosea	Herba	1,2
Apocynaceae	Widuri	Calotropis gigantea	Semak	1,3
Poaceae	Rumput lari-lari	Spinifex littoreus	Herba	1,2,3,4
	Rerumputan	Stenotaphrum secundatum	Herba	3,4
Fabaceae	Kacang laut	Canavalia rosea	Herba	1,2,3
Convolvuloideae	Katang-katang	Ipomoea pes-caprae	Herba	1,2,3,4
Amaryllidaceae	Bakung	Crinium asiaticum	Herba	1

Famili	Nama lokal	Nama ilmiah	Habitus	Pos
Acanthaceae	Jeruju	Acanthus sp.	Semak	1
Goodeniaceae	Beruwas laut	Scaevola taccada	Semak	1,3
Malvaceae	Waru laut	Hibiscus tiliaceus	Pohon	1,3,4
Calophyllaceae	Nyamplung	Calophyllum inophyllum	Pohon	1,2,3
Pandanaceae	Pandan laut	Pandanus odorifer	Semak	1,2,3,4
Combretaceae	Ketapang	Terminalia catappa	Pohon	1,2
Arecaceae	Kelapa	Cocos nucifera L	Pohon	1

Vegetasi di Pantai Pangumbahan didominasi oleh pandan laut (*Pandanus odorifer*), katang-katang (*Ipomoea pes-caprae*), dan rumput lari-lari (*Spinifex littoreus*), yang membantu menjaga kelembaban dan kestabilan suhu sarang penyu serta mencegah erosi pantai. Penyu cenderung memilih lokasi bersarang di sekitar vegetasi karena akar tumbuhan dapat meningkatkan kelembaban tanah dan melindungi sarang dari paparan langsung sinar matahari (Setiawan *et al.*, 2023).

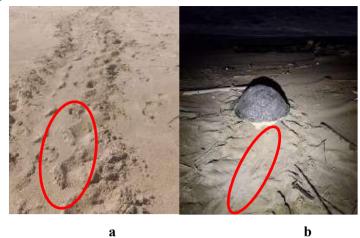
Selama observasi, aktivitas peneluran penyu ditemukan di pos 1-4, sementara pos lima memiliki sedikit vegetasi pandan laut, yang dapat mengurangi preferensi penyu terhadap lokasi tersebut. Pos enam mengalami abrasi akibat erosi ombak, dengan tebing pasir yang terbentuk di tepi pantai, yang kemungkinan menyebabkan penurunan kelayakan area untuk bersarang. Selain itu, pos enam merupakan lokasi wisata yang ramai pengunjung hingga sore hari, sehingga tingginya aktivitas manusia dapat mengganggu penyu saat mencari tempat bertelur.

Gambar 2. Abrasi Pantai Di Pos 6 Pantai Pangumbahan, Sukabumi

2. Proses Penetasan Semi Alami

Rangkaian Proses kegiatan penetasan telur penyu hijau secara semi alami dengan metode *outdoor* yang dilakukan di lokasi kawasan konservasi penyu Pantai Pangumbahan untuk memastikan kelangsungan hidup telur penyu hingga menetas menjadi tukik. Seluruh rangkaian kegiatan ini mengikuti Standar Operasional Prosedur (SOP) tata kelola konservasi penyu di kawasan tersebut.

Gambar 3. Proses Penetasan Semi Alami Penyu Hijau di Pantai Pangumbahan, Sukabumi


Selama pengamatan, tercatat empat individu penyu hijau yang naik ke pantai untuk bertelur. Setiap penyu memilih lokasi sarang dengan kondisi lingkungan yang sesuai. Proses peneluran berlangsung dalam periode yang berbeda, memberikan gambaran tentang pola aktivitas penyu di habitat tersebut. Data penyu hijau bertelur terdapat pada Tabel 8.

Tabel 8. Data Penyu Hij	au Bertelur di Pantai	Pangumbahan, Sukabumi
-------------------------	-----------------------	-----------------------

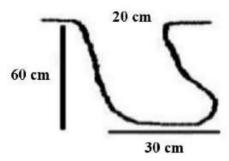
No	Pos	Tanggal Bertelur	Jumlah	Tanggal Penetasan	Lama
		(Habitat Asli)	Telur	(Semi Alami)	Inkubasi
1	2	24 Desember 2024	90	21 Februari 2025	57 hari
2	1	27 Desember 2024	54	3 Maret 2025	59 hari
3	3	30 Januari 2025	86	6 Maret 2025	60 hari
4	4	16 Januari 2025	82	16 Maret 2025	59 hari

Pengamatan dan Relokasi

Patroli malam di Pantai Pangumbahan dilakukan untuk menemukan sarang induk yang bertelur, mencegah pencurian telur, dan mengurangi gangguan predator. Penyu bertelur antara pukul 18.00 - 05.00 WIB, sementara patroli berlangsung dari pukul 20.00 WIB hingga dini hari, dengan satu petugas per pos dan dua pengawas di enam pos. Berdasarkan pengalaman empiris, keberadaan penyu dikenali dari jejaknya, penyu yang telah bertelur meninggalkan garis lurus di tengah jejak, sementara yang tidak bertelur memiliki pola jejak ekor terputus-putus.

Gambar 4. Perbedaan Jejak Penyu Hijau, (a) Bertelur (Sumber: Dokumentasi Pribadi); (b) Tidak Bertelur (Sumber: iNaturalis.com (2025)

Telur segera direlokasi ke sarang semi-alami dengan metode *outdoor* untuk perlindungan, dilakukan dalam waktu maksimal dua jam setelah induk meninggalkan sarang, karena dalam rentang waktu ini telur masih toleran terhadap perubahan posisi (Sinaga *et al.*, 2024). Pasir yang melekat pada telur tidak dibersihkan karena berperan menjaga kondisi embrio. Relokasi bertujuan melindungi telur dari pencurian serta ancaman predator alami.



Gambar 5. Pemindahan Telur dari Sarang Alami

Inkubasi Telur

Inkubasi telur penyu di sarang semi-alami dilakukan di area terbuka dalam bangunan semi permanen seluas 200 m², berjarak sekitar 100 meter dari pantai, dengan pagar besi dan

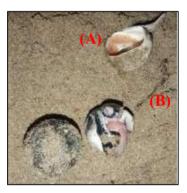
kawat pelindung untuk mencegah gangguan predator. Pembuatan sarang dilakukan menggunakan sekop besi dengan teknik penggalian khusus agar pasir tidak runtuh, membentuk lubang berdiameter 20 cm di permukaan, 30 cm di bagian bawah, dan kedalaman 60 cm.

Gambar 6. Skema Kedalaman Sarang Semi Alami

Telur diletakkan satu per satu secara hati-hati, menggunakan pasir asli dari lokasi peneluran untuk menjaga suhu, kelembaban, dan pH tetap stabil. Setelah ditanam, setiap sarang ditandai dengan bongkahan bambu berisi identitas kode sarang, tanggal temuan, jumlah telur, asal pos, dan nama petugas. Setelah satu bulan, sarang dipasangkan ember berlubang untuk mencegah tukik menyebar ke luar area serta menandai bahwa telur akan segera menetas.

Gambar 7. Pemberian Informasi pada Sarang

Pemeliharaan Sarang


Pemeliharaan sarang penetasan merupakan bagian penting dalam konservasi penyu, dengan pengawasan 24 jam oleh dua petugas yang bekerja secara bergantian untuk mencegah gangguan dari predator seperti semut merah dan biawak. Selain menjaga keamanan sarang, petugas segera bertindak saat penetasan terjadi dengan memasukkan tukik ke dalam ember dan membawanya ke ruang karantina berisi pasir. Tukik diamankan selama maksimal 24 jam sebelum dilepaskan ke laut tanpa diberi makanan, karena tubuh mereka masih memiliki cadangan energi, seperti yang terjadi secara alami di habitat liar (Ginting *et al.*, 2020).

Gambar 8. Petugas Mengamankan Tukik yang Telah Menetas

Pembongkaran Sarang

Berdasarkan observasi, sebagian besar telur penyu menetas pada malam hari karena suhu yang lebih rendah lebih ideal bagi perkembangan embrio, meskipun beberapa juga menetas di siang hari. Tukik yang baru menetas biasanya berada di dalam batas ember plastik sebagai pengaman, tetapi terkadang ada yang keluar dari area tersebut dan berjalan di sekitar sarang, sehingga petugas harus memastikan mereka diamankan ke tempat yang lebih aman. Setelah penetasan, petugas melakukan pembongkaran sarang untuk membersihkan sisa cangkang dan telur yang gagal menetas, dengan pasir di ruang penetasan diganti setiap tiga tahun untuk menjaga kualitas lingkungan. Saat pembongkaran, sering ditemukan tukik yang belum bisa naik ke permukaan setelah inkubasi maksimal 60 hari. Proses ini dilakukan secara manual tanpa alat bantu agar keamanan dan ketelitian tetap terjaga.

Gambar 9. Pemeriksaan Telur, (A) Telur Membusuk; (B) Telur Gagal Dengan Embrio Terbentuk

Rekapitulasi Data

Setelah pembongkaran sarang, petugas melakukan rekapitulasi data keberhasilan penetasan untuk mencatat jumlah tukik yang menetas serta fluktuasi populasi penyu. Pencatatan dilakukan setiap hari, mencakup jumlah penyu yang bertelur, yang naik tetapi tidak bertelur (memeti), dan jumlah telur yang dihasilkan. Data telur langsung dicatat setelah penanaman di sarang semi-alami, sedangkan jumlah telur yang menetas dihitung saat pembongkaran sarang. Informasi ini digunakan untuk analisis populasi, evaluasi konservasi, dan penentuan kebijakan perlindungan penyu.

Gambar 10. Rekapitulasi Data, (a) Pencatatan Data Penetasan Telur; (b) Pelepasan Tukik

Tukik yang telah dikarantina selama kurang dari 24 jam segera dilepaskan di Pantai Pangumbahan setiap pukul 17.30 WIB, saat suhu mulai menurun untuk mengurangi risiko predator. Tukik dibawa menggunakan keranjang dan dilepaskan di dekat batas pasang surut agar mereka mengenali pantai tempat menetas, yang kelak menjadi lokasi bertelur saat dewasa. Setelah dilepaskan, tukik secara alami merangkak menuju laut, memanfaatkan kemampuan navigasi berbasis medan magnet bumi untuk menemukan arah yang tepat. Kemampuan ini memungkinkan mereka kembali ke pantai kelahiran setelah mencapai usia sekitar 25 tahun, meskipun telah berkelana ribuan kilometer di lautan (Ubaydillah *et al.*, 2023).

SIMPULAN

Pantai Pangumbahan memiliki karakteristik habitat yang sesuai bagi penyu hijau (*Chelonia mydas*), ditunjukkan oleh lebar pantai yang memadai, kemiringan landai, pasir halus dan pH netral, serta keberadaan vegetasi pantai seperti Pandan Laut (*Pandanus odorifer*), rumput lari-lari (*Spinifex littoreus*), dan Katang-katang (*Ipomoea pes-caprae*), yang mendukung kestabilan ekosistem. Proses penetasan semi alami di kawasan ini meliputi pengamatan, relokasi, inkubasi, pemeliharaan dan pembongkaran sarang, rekapitulasi data, serta pelepasan tukik. Karakteristik tersebut menunjukkan bahwa Pantai Pangumbahan merupakan habitat yang sesuai dan mendukung keberhasilan peneluran penyu hijau.

UCAPAN TERIMA KASIH

Terima kasih kepada Ibu Dr. Meilisha Putri Pertiwi, M.Si. dan bapak Lufty Hari Susanto, M.Pd. selaku dosen pembimbing yang sudah membimbing saya dengan sabar, memberikan saran dan arahan selama penelitian ini, serta seluruh petugas kawasan konservasi penyu Pantai Pangumbahan yang telah memberikan dukungan dan wawasan berharga. Semoga penelitian ini bermanfaat bagi konservasi penyu dan kelestarian ekosistem pesisir.

DAFTAR PUSTAKA

- Afifah, A.N., Sabila, F., & Hardi, O.S. (2019). Analisis karakteristik habitat penyu sisik Taman Nasional Kepulauan Seribu, Provinsi DKI Jakarta. *Siliwangi Seri Sains Dan Teknologi*, 5(1), 23-27. DOI: 10.37058/jssainstek.v5i1.636
- Alfred, O.M.D., Zangri, C.K., Ermelinda, D.M., Fransiskus, K.D., Vinsensius, M.A., & Andriani, N.M. (2020). Karakteristik fisik pantai dan distribusi sarang alami penyu lekang (*Lepidochelys olivacea*) di Pantai Sosadale Rote-Ndao Nusa Tenggara Timur. *Biofaal Journal*, 1(2), 55-65. DOI: 10.30598/Biofaal.V1i2pp55-65
- Alwan, I., Koroy, K., & Nurafni. (2024). Karakteristik biofisik habitat peneluran penyu di Kawasan Konservasi Desa Tilei Pantai, Kabupaten Pulau Morotai. *Jurnal Ilmu Kelautan Kepulauan*, 7(2), 1085–1100. DOI: 10.33387/jikk.v7i2.9244
- Damanhuri, H., Putra, A., & Troa, R.A. (2019). Karakteristik bio-fisik pantai peneluran penyu di Pulau Laut-Sekatung Kabupaten Natuna Provinsi Kepulauan Riau. *Prosiding Simposium Nasional Magister*, 3(2), 1-15.
- Desanti, L., & Junianto. (2023). Monitoring landing of sea turtles laying eggs in the Pangandaran Region. Berkala Perikanan Terubuk, 51(3), 1942-1948.
- Erlangga, E., Lestari, A., Zulfikar, Z., Khalil, M., & Ezraneti, R. (2021). Penetasan telur penyu sisik (*Eretmochelys imbricata*) dengan kedalaman yang berbeda. *Acta Aquatica: Aquatic Sciences Journal*, 8(2), 86-90. DOI: 10.29103/Aa.V8i2.4778
- Falih, N.Z., Inayah, N.F., Indirayani, S.L., & Saputri, S.A. (2025). Upaya konservasi penyu di Indonesia sebagai penyelamat dari ancaman kepunahan. *ENVIRO: Journal of Tropical Environmental Research*, 27(1), 51-58. DOI: 10.20961/enviro.v27i1.101223
- Fitri, D.H., & Herawati, T. (2023). Tingkat keberhasilan penetasan telur penyu hijau (*Chelonia mydas*) pada sarang semi alami di Satuan Pelayanan Taman Pesisir Penyu Pantai Pangumbahan periode bulan Agustus 2021. *JOANE: Journal of Oceanography and Aquatic Science*, *I*(1), 1-9. DOI: 10.56855/joane.v1i1.165
- Ghalib, M., Salim, D., & Nursalam. (2020). Karakteristik habitat peneluran penyu di Pulau Denawan dan Pulau Kalambau Kecamatan Pulau Sembilan Kabupaten Kota Baru Kalimantan Selatan. *MCSIJ (Marine, Coastal and Small Islands Journal) JURNAL KELAUTAN, 3*(2), 1-10. DOI: 10.20527/m.v3i2.11768
- Ginting, F.A., Djunaedi, A., & Ario, R. (2020). Pengaruh komposisi pakan terhadap laju pertumbuhan tukik penyu lekang di Serangan, Bali. *Journal of Marine Research*, *9*(4), 362–368. DOI: 10.14710/Jmr.V9i4.28733
- IUCN. (2024). Supplementary Information Green Turtle (Chelonia mydas). https://www.iucnredlist.org/search/grid?query=Green%20Turtle%20(Chelonia%20m ydas)&searchType=species
- Kasmeri, R., Wulandari, C., & Dewi Maharani, A. (2022). Tingkat keberhasilan penetasan penyu lekang (*Lepidochelys olivacea*) pada sarang semi alami. *Bioconcetta*, 8(1), 36–44. DOI: 10.22202/bc.2022.v8i1.6596
- Lasmi, & Cahyaningtias. (2021). Identifikasi ancaman dan peran masyarakat pesisir terhadap kelestarian penyu di Pantai Riangdua Kabupaten Lembata. *Jurnal Bahari Papadak*, 2(2), 101-104.
- Marselino, F., Yusuf, M., & Redjeki, S. (2024). Karakteristik fisik habitat peneluran penyu di Pulau Gelasa, Kepulauan Bangka Belitung. *Journal of Marine Research*, 13(2), 171-184. DOI: 10.14710/Jmr.V13i2.39011

- Mufida, I., Pertiwi, M.P., & Rostikawati, R.T. (2023). Keanekaragaman jenis Echinodermata di Pantai Drini Gunung Kidul, Yogyakarta. 24(1), 19-30. DOI: 10.19184/jid.v24i1.30097
- Musyadik, & Fathnur. (2020). Analisis hubungan unsur cuaca terhadap fluktuasi produksi sawit di Kab. Konawe Utara. *Jurnal Ecosolum*, 9(2), 1-10. DOI: 10.20956/Ecosolum.V9i2.10641
- Pertiwi, M.P., & Lathifah, S.S. (2018). Conditions of hilling habitat of *Chelonia mydas* (Green Turtle) in Pangumbahan Beach Ujung Genteng, Sukabumi Selatan. *JSI: Journal of Science Innovare*, 1(2), 64-67. DOI: 10.33751/jsi.v1i02.1003
- Pratama, A.A., & Romadhon, A. (2020). Karakteristik habitat peneluran penyu di Pantai Taman Kili-Kili Kabupaten Trenggalek dan Pantai Taman Hadiwarno Kabupaten Pacitan. *Juvenil:Jurnal Ilmiah Kelautan Dan Perikanan*, 1(2), 198-209. DOI: 10.21107/Juvenil.V1i2.7574
- Putriani, R.B., Diantari, R., Yudha, I.G., Murfid, G.D., Savira, K.W., Pambudi, N.N., Maharani, D.D., Fathan, N.H., Lubis, O.N., & Putri, W.R. (2025). Status Konservasi Berbagai Spesies Penyu Laut Di Indonesia: Studi Literatur. *Samakia: Jurnal Ilmu Perikanan*, 16(1), 87-95. DOI: 10.35316/jsapi.v16i1.4009
- Rachman, D., Kushartono, E.W., & Santosa, G.W. (2019). Kecocokan habitat bertelur penyu sisik *Eretmochelys imbricate*, Linnaeus, 1766 (Reptilia: Cheloniidae) di Balai Taman Nasional Laut Kepulauan Seribu, Jakarta. *Journal of Marine Research*, 8(2), 168-176. DOI: 10.14710/jmr.v8i2.25099
- Rahman, S.A., Agustina, S.S., Mutalib, Y., Gani, A., Sangkia, F.D., & Khartiono, L.D., Akram, Trisaputra, M.I., Sululing, S., Syakir, M., Ariani, C.D., Gunawan, I., Sutisna, N., & Agus, A. (2023). Studi karakteristik habitat peneluran penyu di Pantai Sinorang, Desa Sinorang, Kecamatan Batui Selatan, Kabupaten Banggai sebagai dasar kelestariannya. 14(3), 173-185. DOI: 10.15578/bawal.14.3.2022.173-185
- Rakhma, H.W., Noor, M.T., & Saraswati, E. (2024). Analisis tingkat keramah lingkungan alat tangkap jaring insang hanyut (*drift gillnet*) di perairan Lekok Kabupaten Pasuruan. *Jurnal Ilmiah Perikanan dan Peternakan*, 3(1), 46-52. DOI: 10.62951/manfish.v3i1.125
- Rismawati, R., Hernawati, D., & Chaidir, D.M. (2022). Egg laying activity and landing frequency of green turtle (*Chelonia mydas*) in Pangumbahan Beach Sukabumi. *Metamorfosa: Journal of Biological Sciences*, 9(1), 206-216. DOI: 10.24843/Metamorfosa.2021.V09.I01.P21
- Sari, W., Ilyosa, A.N., & Fauziah. (2020). Pengaruh kedalaman sarang dan jumlah telur terhadap keberhasilan penetasan dan kemunculan tukik *Lepidochelys olivacea* di pantai. *Prosiding Seminar Nasional Biotik*, 8(1), 320-327. DOI: 10.22373/pbio.v8i1.9657
- Septiana, N.O., Sugiyarto, & Budiharjo, A. (2019). Karakteristik habitat bertelur penyu di pantai Taman Kecamatan Ngadirojo Kabupaten Pacitan, Jawa Timur. Seminar Nasional Pendidikan Biologi dan Saintek (SNPBS) ke-IV 2019, 4(01), 371-378.
- Sinaga, R.R.K., Hanif, A., Kurniawan, F., Roni, S., Laia, D.Y.W., & Hidayati, J.R. (2024). Tingkat keberhasilan penetasan telur penyu hijau (*Chelonia mydas*) dan penyu sisik (*Eretmochelys imbricata*) di Pulau Mangkai Kepulauan Anambas. *Journal of Marine Research*, 13(1), 92-99. DOI: 10.14710/Jmr.V13i1.38531
- Suryawan, I.W.K., & Tehupeiory, A. (2023). Strategi partisipatif masyarakat dalam mitigasi dampak alami. *Indonesian Journal of Conservation*, 12(1), 88-100. DOI:

- 10.15294/ijc.v12i2.47191
- Swadarma, Q. (2018). Karakteristik habitat peneluran penyu di kawasan stasiun pembinaan dan pelestarian penyu Rantau Sialang Kabupaten Aceh Selatan sebagai referensi matakuliah ekologi hewan. *Disertasi*. UIN Ar-Raniry Banda Aceh.
- Syaputra, L.I., Mardhia, D., & Syafikri, D. (2020). Karakteristik habitat peneluran penyu di calon kawasan Konservasi Perairan Taman Pesisir Lunyuk dan Tatar Sepang. *Indonesian Journal of Applied Science and Technology*, 1(2), 55-63.
- Triacha, Z.I.E.C., Pertiwi, M.P., & Rostikawati, R.T. (2021). Keanekaragaman Echinodermata di Pantai Cibuaya Ujung Genteng, Jawa Barat. *Jurnal ILMU DASAR*, 22(1), 9-18. DOI: 10.19184/jid.v22i1.18899
- Ubaydillah, Y.Z., Yona, D., & Kasitowati, R.D. (2023). Analisis kesesuaian habitat peneluran penyu sisik (*Eretmocheyls imbricata*) di Pantai Batu Hitam dan Pantai Bama, Taman Nasional Baluran, Situbondo. *Jurnal Kelautan Tropis*, 26(2), 203-214. DOI: 10.14710/Jkt.V26i2.15733
- Waworuntu, S., & Herlambang, S. (2019). Penataan Kawasan Wisata Pantai Pangumbahan dengan konsep ekowisata. *Jurnal Sains, Teknologi, Urban, Perancangan, Arsitektur (Stupa)*, *I*(2), 2261-2276. DOI: 10.24912/Stupa.V1i2.4600
- Winarto, W., & Azahra, S.D. (2022). Karakteristik dan preferensi habitat penyu dalam membuat sarang alami untuk peneluran. *Bioedusains: Jurnal Pendidikan Biologi dan Sains*, 5(1), 189-196. DOI: 10.31539/Bioedusains.V5i1.3655
- Yusra, A.A., Fisesa, A.A., Fachrizal, A., & Susanto, H. (2022). *Penyu dan Paloh, perjalanan konservasi di ekor Borneo*. Jakarta. Yayasan WWF Indonesia
- Pratama, A. A., & Romadhon, A. (2020). Karakteristik Habitat Peneluran Penyu Di Pantai Taman Kili-Kili Kabupaten Trenggalek Dan Pantai Taman Hadiwarno Kabupaten Pacitan. *Juvenil:Jurnal Ilmiah Kelautan Dan Perikanan*, 1(2), 198–209. Https://Doi.Org/10.21107/Juvenil.V1i2.7574