Isi Artikel Utama

Abstrak

Budidaya tanaman secara monokultur akan memberikan pengaruh bukan hanya pada kondisi tanah tetapi juga pada pertumbuhan tanaman, kadar hara dalam jaringan tanaman dan hasil. Penelitian ini bertujuan untuk mengetahui pengaruh masa budidaya tebu secara monokultur terhadap kadar hara dalam akar, batang dan daun tanaman tebu, serta hubungannya dengan produktivitas dan rendemen tebu pada tiga ordo tanah yang berbeda. Penelitian ini dilakukan dengan dua faktor yaitu ordo tanah (Entisol, Inceptisol dan Vertisol) dan masa monokultur tebu (1–10, 11–20 dan 21–30 tahun). Tebu yang digunakan merupakan tebu ratoon dua. Parameter yang diamati antara lain kadar hara N,P,K,B dan Zn pada akar, batang dan daun tebu, serta rendemen dan produktivitas tanaman. Analisa data dilakukan menggunakan ANOVA taraf 5% serta analisa korelasi regresi. Hasil menunjukkan bahwa kadar N (daun, batang dan akar), kadar P (daun, batang dan akar), kadar K daun, kadar B (daun dan akar) dan kadar Zn akar tebu dipengaruhi oleh interaksi antara ordo tanah dan masa monokultur tebu. Kadar Zn daun dan kadar K di daun tebu memiliki korelasi yang kuat dan signifikan terhadap produktivitas tebu, dengan nilai masing-masing r=0,778* dan r=0,699*, sedangkan rendemen tanaman tebu memiliki korelasi kuat dan signifikan dengan kadar N akar (r=0,752*). Hal ini menunjukkan bahwa ordo tanah dan masa monokultur tebu memberikan pengaruh terhadap kadar hara dalam tanaman tebu dan ketersediaan unsur hara makro seperti N dan K, serta hara mikro seperti Zn perlu diperhatikan untuk mendapatkan produktivitas dan rendemen tebu yang tinggi. 

Rincian Artikel

Cara Mengutip
Kusumawati, A., Hanudin, E., Purwanto, B. H., & Nurudin, M. (2022). KADAR HARA DALAM JARINGAN TANAMAN SEBAGAI RESPON BUDIDAYA MONOKULTUR DAN HUBUNGANNYA DENGAN HASIL PADA TANAMAN TEBU. Jurnal Ilmu-Ilmu Pertanian Indonesia, 24(1), 39–48. https://doi.org/10.31186/jipi.24.1.39-48

Referensi

  1. Alloway, B.j. (1995). Heavy Metals in Soils, Second Edition, Blackie Academic &. Profesional, An Imprint 0f Chapman & Hall, Glasgow.
  2. Amolo, R. A., Sigunga, D. O. & Owuor, P. O. (2014). Evaluation of sugarcane cropping systems in relation to productivity at Kibos in Kenya. International Journal of Agricultural Policy and Research, 2(7), 256–266. DOI: http://www.journalissues.org/ijapr/ .
  3. Barbosa, L. C., de Souza, Z. M., Franco, H. C. J., Otto, R., Neto, J. R., Garside, A. L. & Carvalho, J. L. N. (2018). Soil texture affects root penetration in Oxisols under sugarcane in Brazil. Geoderma Regional, 13, 15–25.
  4. Bramley, R., Ellis, N., Nable, R. & Garside, A. (1996). Changes in soil chemical properties under long-term sugar cane monoculture and their possible role in sugar yield decline. Australian Journal of Soil Research, 34(6), 967–984. DOI: https://doi.org/10.1071/ SR9960967.
  5. Brdar-Jokanovi?, M. (2020). Boron toxicity and deficiency in agricultural plants. International Journal of Molecular Sciences, 21(4). DOI: https:// doi.org/10.3390/ijms21041424.
  6. Britto, D. T. & Kronzucker, H. J. (2008). Cellular mechanisms of potassium transport in plants. Physiologia Plantarum, 133(4), 637–650. DOI: https://doi.org/10.1111/j.1399-3054.2008. 01067.x.
  7. Brown, P. H. & Shelp, B. J. (1997). Boron mobility in plants. Plant and Soil, 193, 85–105. DOI: https://doi.org/10.1023/A.
  8. Cahyani, S., Sudirman, A. & Abdul Azis. (2016). Respons Pertumbuhan vegetatif tanaman tebu t (Saccharum officinarum L.) Ratoon 1 terhadap pemberian kombinasi pupuk organik dan pupuk anorganik. Jurnal Agro Industri Perkebunan, 60(2), 4791–4792. DOI: https://doi.org/ 10. 1063/1.4772547.
  9. Cardozo, N. P. & Sentelhas, P. C. (2013). Climatic effects on sugarcane ripening under the infl uence of cultivars and crop age. Scientia Agricola, 70(6), 449–456. DOI: https:// doi.org/10.1590/S0103-90162013000600011.
  10. De Moraes, E. R., Mageste, J. G., Lana, R. M. Q., Torres, J. L. R., Domingues, L. A. D. S., Lemes, E. M. & De Lima, L. C. (2019). Sugarcane root development and yield under different soil tillage practices. Revista Brasileira de Ciencia Do Solo, 43, 1–10. DOI: https://doi.org/10.1590/ 18069657 rbcs20180090.
  11. Esteban, D. A. A., de Souza, Z. M., Tormena, C. A., Lovera, L. H., de Souza Lima, E., de Oliveira, I. N. & de Paula Ribeiro, N. (2019). Soil compaction, root system and productivity of sugarcane under different row spacing and controlled traffic at harvest. Soil and Tillage Research, 187, 60-71.
  12. Firdaus, G. M. (2018). The effect of biofertilizer and inorganic fertilizer on the vegetative growth of sugarcane (Saccharum officinarum). Journal of Applied and Physical Sciences, 4(1), 1404– 1411. DOI: https://doi.org/10.20474/japs-4.1.2 RESPON KADAR HARA TANAMAN TEBU JIPI. 24(1), 39-48 (2022) 47 .
  13. Franco, H. C. J., Mariano, E., A.C.Vitti, C.E.Faroni, Otto, R. & P.C.O.Trivelin. (2011). Sugarcane response to Boron and Zinc in Southeastern Brazil. Sugar Tech, 13(1), 86–95. DOI: https:// doi.org/10.1007/s12355-010-0057-x.
  14. Hani, E. S. & Mustapit. (2016). Stakeholder Response to the development strategy of sugarcane dry land agriculture in East Java. Agriculture and Agricultural Science Procedia, 9, 469–474. DOI: https:// doi.org/ 10.1016/j.aaspro.2016.02.165.
  15. Harianto, N. & Susilowati, S. H. (2019). Kebijakan dukungan domestik untuk menetralisir dampak negatif penurunan tarif impor terhadap industri gula Indonesia. Jurnal Agro Ekonomi, 36(2), 91. DOI: https://doi.org/10.21082/jae.v36n2.2018. 91-112.
  16. Kadarwati, T. F. (2020). Effect of different levels of potassium on the growth and yield of sugarcane ratoon in inceptisols. IOP Conference Series: Earth and Environmental Science, 418(1), 1–10. DOI: https://doi.org/10.1088/1755-1315/ 418/ 1/012066.
  17. Lal, K. N. & Singh, J. N. (1961). Uptake of phosphorus and its accumulation in component parts of sugarcane as affected by age, phosphorus deficiency and levels of phosphorus. Soil Science and Plant Nutrition, 6(3), 120–126. DOI: https:// doi.org/10.1080/00380768.1961. 10430937.
  18. Leite, J. M., Ciampitti, I. A., Mariano, E., VieiraMegda, M. X. & Trivelin, P. C. O. (2016). Nutrient partitioning and stoichiometry in unburnt sugarcane ratoon at varying yield levels. Frontiers in Plant Science, 7. DOI: https://doi.org/ 10.3389/fpls.2016.00466.
  19. Liferdi, L., Poerwanto, R., Susila, A., Idris, K. & Mangku, I. (2008). Korelasi kadar hara fosfor daun dengan produksi tanaman manggis. Jurnal Hortikultura, 18(3), 85204. DOI: https:// doi.org/10.21082/jhort.v18n3.2008.p.
  20. Marin, F. R., Ignacio, J., Edreira, R., Andrade, J. & Grassini, P. (2019). Field crops research onfarm sugarcane yield and yield components as influenced by number of harvests. Field Crops Research, 240, 134–142. DOI: https://doi.org/ 10.1016/j.fcr.2019.06.011.
  21. Mastur, Syafaruddin & Syakir, M. (2016). Peran dan pengelolaan hara nitrogen pada tanaman tebu untuk peningkatan produktivitas tebu. Perspektif, 14(2), 73. DOI: https://doi.org/ 10.21082/p. v14n2.2015.73-86.
  22. Medina, N. H., Branco, M. L. T., Silveira, M. A. G. da. & Santos, R. B. B. (2013). Dynamic distribution of potassium in sugarcane. Journal of Environmental Radioactivity, 126, 172–175. DOI: https://doi.org/10.1016/j.jenvrad.2013. 08.004.
  23. Mellis, E. V., Quaggio, J. A., Becari, G. R. G., Teixeira, L. A. J., Cantarella, H. & Dias, F. L. F. (2016). Effect of micronutrients soil supplementation on sugarcane in different production environments: cane plant cycle. Agronomy Journal, 108(5), 2060. DOI: https://doi.org/10.2134/agronj 2015.0563.
  24. Mengel, K. & Kirkby, E.A. (1987) Principles of Plant Nutrition. International Potash Institute, Worblaufen-Bern, Switzerland.
  25. Misra, V., Solomon, S., Hashem, A., Abd_Allah, E. F., Al-Arjani, A. F., Mall, A. K., Prajapati, C. P. & Ansari, M. I. (2020). Minimization of post-harvest sucrose losses in drought affected sugarcane using chemical formulation. Saudi Journal of Biological Sciences, 27(1), 309–317. DOI: https://doi.org/10.1016/j.sjbs.2019.09. 028/.
  26. Nastaro, B., Mariano, E., Antunes, R., Cesar, P. & Trivelin, O. (2019). Plant physiology and biochemistry influence of nitrate - ammonium ratio on the growth, nutrition, and metabolism of sugarcane. Plant Physiology and Biochemistry, 139, 246–255. DOI: https://doi.org/10.1016/ .j.plaphy.2019.03.024.
  27. Oliveira, R. I. De, Rodrigo, M., Amaral, F., Soares, C., Freire, F. J., Euzébio, D., Neto, S. & De, E. C. A. (2016). Nutrient partitioning and nutritional requirement in sugarcane. Australian Journal of Crop Science, 10(1), 69–75.
  28. Pancelli, M. A., Prado, R. de M., Flores, R. A., de Almeida, H. J., Moda, L. R. & de Souza Junior, J. P. (2015). Growth, yield and nutrition of sugarcane ratoon as affected by potassium in a mechanized harvesting system. Australian Journal of Crop Science, 9(10), 915–924.
  29. Pembengo, W., Handoko & Suwarto. (2012). Efisiensi penggunaan cahaya matahari oleh tebu pada berbagai tingkat pemupukan nitrogen dan fosfor. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 40(3), 211–217. DOI: https://doi.org/10.24831/jai.v40i3.6828.
  30. Pusdatin. (2017). Outlook Komoditas Pertanian Sub Sektor Perkebunan Tebu. Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal, Kementerian Pertanian. Rahman, M. E., Sinaga, B. M.,
  31. Rerkasem, B. & Jamjod, S. (2004). Boron deficiency in wheat: A review. Field Crops Research, 89 (2–3), 173–186. DOI: https://doi.org/10.1016/ j.fcr.2004.01.022.
  32. Rhodes, R., Miles, N. & Hughes, J. C. (2018). Interactions between potassium, calcium and magnesium in sugarcane grown on two contrasting soils in South Africa. Field Crops Research, 223, 1–11. DOI: https://doi.org/10.1016/j.fcr. 2018.01.001.
  33. Rice, R. W., Gilbert, R. A., & Mccray, J. M. (2010). Nutritional requirements for Florida sugarcane 1. Edis, 2, 1–8.
  34. Richardson, A. E., Barea, J. M., McNeill, A. M. & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 321(1–2), 305–339. DOI: https://doi.org/10.1007/s11104-009-9895-2
  35. Saleem, M. A., Ghaffar, A., Anjum, S. A., Cheema, M. & Bilal, M. F. (2012). Effect of nitrogen on growth and yield of sugarcane. Journal American Society of Sugar Cane Technologists, 32, 75– 93.
  36. Snyman, S. J., Baker, C., Huckett, B. I., McFarlane, S. A., Van Antwerpen, T., Berry, S., Omarjee, J., Rutherford, R. S. & Watt, D. A. (2008). South African sugarcane research institute: embracing biotechnology for crop improvement research. Sugar Tech, 10(1), 1–13. DOI: https://doi.org/10.1007/s12355-008-0001-5.
  37. Subiyakto. (2017). Analisis keragaman parameter penentu rendemen gula kristal putih pada pabrik gula BUMN. M.P.I, 11, 1–10.
  38. Susila & Sinaga, B. M. (2005). Pengembangan industri gula Indonesia yang kompetitif pada situasi persaingan yang adil. Jurnal Litbang Pertanian, 24(1), 1–9.
  39. Thamrin, M., Susanto, S., Susila, A. D. & Sutandi, A. (2016). Hubungan konsentrasi hara nitrogen, fosfor, dan kalium daun dengan produksi buah sebelumnya pada tanaman jeruk Pamelo. Jurnal Hortikultura, 23(3), 225. DOI: https://doi.org/ 10.21082/jhort.v23n3.2013.p225-234.
  40. Tunjungsari, R. (2014). Analisis produksi tebu di Jawa Tengah, JEJAK, Jurnal of Economics and Policy, 7(2), 121-133. DOI: 10.15294jejak.v7i1.3596.
  41. Wibowo, E. (2013). Pola kemitraan antara petani tebu rakyat kredit dan mandiri dengan pabrik gula Modjopanggoong Tulungagung. Jurnal Manajemen Agribisnis, 13(1), 1–12.
  42. Xu, N., Bhadha, J. H., Rabbany, A., Swanson, S., McCray, J. M., Li, Y. C., Strauss, S. L. & Mylavarapu, R. (2021). Crop nutrition and yield response of bagasse application on sugarcane grown on a mineral soil. Agronomy, 11(8), 1–15. DOI: https://doi.org/10.3390/agronomy11081526.