Main Article Content

Abstract

Improper management of land-use activities cause the disruption of bio-physical balance in the watershed, resulting in flooding, drought, sedimentation, etcetera. This led to many losses, both in economic and environmental. To reduce the impacts, implementation of integrated and sustainable watershed management is urgently required. This requires efficient and effective implementing agencies. They should have the similar perception regarding their respective authority in managing the watershed. To avoid conflict of interests among the agencies concerned, determining the boundaries and area of watershed based on bio-physical parameters is absolutely indispensable.
The purpose of the study is to delineate the boundary and determine the area of Manjuto watershed in Bengkulu Province, Indonesia. The 4-step procedure is applied, comprises DEM conditioning, flow routing, delineation of watershed boundary and determination of watershed area. Extensive calculations performed by considering the topography of the region. The test using transect
lines elevation proved that the result is accurate and consistent with the the oretical definition. Afterward, the result is compared to the existing information. The result shows that Manjunto watershed area is 79,581 hectares or 7.4% smaller than the area defined by the Ministry of Public Work and 29.3% larger
than the area defined by the Ministry of Forestry.

Article Details

How to Cite
Gunawan, G. (2019). DELINIASI DAS BERBASIS SISTEM INFORMASI GEOGRAFIS DALAM RANGKA MENDUKUNG PENGELOLAAN DAS TERPADU (Studi Kasus : DAS Manjuto Provinsi Bengkulu-Indonesia). Inersia: Jurnal Teknik Sipil, 3(1), 7–15. https://doi.org/10.33369/ijts.3.1.7-15

References

  1. Anonim., 1997. Ringkasan Agenda 21 Indonesia : Strategi Nasional Untuk
  2. Pembangunan Berkelanjutan. Kantor Menteri Negara Lingkungan Hidup.
  3. Jakarta. 300 Hal.
  4. Anonim., 1997. WMS: Watershed Modeling System Reference Manual, Version 5.0. Bringham Young University Engineering Computer Graphics Laboratory, Provo, UT. (chl.wes.army.mil/software/wms/docs.htp)
  5. Anonim., 2003. Departemen Kehutanan, Pedoman Teknis Pengelolaan Daerah Aliran Sungai Terpadu. http://www.dephut.go.id/informasi/unda
  6. ng2/skmenhut/.
  7. Anonim., 2005. BPS Bengkulu, Bengkulu Dalam Angka. Badan Pusat
  8. Statistik Provinsi Bengkulu, Bengkulu.
  9. Arsyad, S., 2000. Konservasi Tanah dan Air, Serial Pustaka, IPB Press, Bagian Proyek Penelitian Sumberdaya Agroklimat dan Hidrologi (BP2SAH)
  10. dan Bagian Proyek Pembinaan Perencanaan Sumber Air Ciliwung -
  11. Cisadane , 2004. Laporan Akhir Pengembangan Teknologi Dam Parit untuk Penanggulangan Banjir dan Kekeringan. Balai Agroklimat dan Hidrologi Bogor.
  12. Asdak., 2004/1995. Hidrologi dan Pengelolaan Daerah Aliran Sungai.
  13. Gadjah Mada University Press, Yogyakarta.
  14. Dabney, S. M., K. C. McGregor, L. D. Meyer, E. H. Grissinger, and G. R.
  15. Foster. 1993. Vegetative barriers for runoff and sediment control. In
  16. Integrated Resource Management and Landscape Modification for
  17. Environmental Protection, 60? 70. J. K.
  18. Fakhrudin, M,. 2003. Kajian Respon Hidrologi Akibat Perubahan Penggunaan Lahan di DAS Ciliwung, Bahan Seminar Program Pascasarjana IPB, Bogor
  19. Indarto, et al. 2008. Pembuatan Jaringan Sungai dan Karakteristik Topografi DAS dari DEM Jatim, Media Teknik Sipil, Surabaya.
  20. Jones, R. 2002, “Algorithms for using a DEM for mapping catchment areas of stream sediment samples”, Computers & Geosciences, vol. 28, no. 9, pp. 1051-1060
  21. Lins, H., and D. Frevert. 1998. “The Watershed and River Systems
  22. Management Model – An Overview.” Proceedings of the First Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, pp. 5-101
  23. to 5-104.
  24. Maharani, H. 2007. 3D Analyst : Determining Watershed in Lombok Island used Arc View 3.3. Insititut Pertanian Bogor, Bogor.
  25. Maidment, D. R. 1999. GIS and hydrologic modeling. in Environmental
  26. Modeling with GIS, Goodchild, M. F., B. O. Parks, and L. T. Steyaert (ed.)
  27. Oxford University Press, NewYork.
  28. McCuen, R. H., and W. M. Snyder. 1986. Hydrologic Modeling: Statistical
  29. Methods and Applications. Englewood Cliffs, N.J.:Prentice Hall.
  30. Mitchell, B., B. Setiawan dan D.H. Rahmi. 2007. Pengelolaan Sumberdaya
  31. dan Lingkungan. Gadjah Mada Universty Press, Yogyakarta.
  32. Montgomery, D. R. and W. E. Dietrich, 1988, "Where do channels begin,"
  33. Nature, 336: 232-234.
  34. Nash, J. E., and J. E. Sutcliffe. 1970. River flow forecasting through
  35. conceptual model. J. Hydrol. 10(3): 282? 290.
  36. Quinn, P., K. Beven, P. Chevallier and O. Planchon, 1991, "The Prediction of Hillslope Flow Paths for Distributed Hydrological ModelingUsing Digital
  37. Terrain Models," Hydrological Processes, 5: 59-80.
  38. Rodda, H.J.E., S. Demuth, and U. Shankar. 1999. “The Application of a
  39. GIS-Based Decision Support System to Predict Nitrate Leaching to
  40. Groundwater in Southern Germany.” Hydrological Sciences Journal 44(2):221-236.
  41. Ryan, C., 2005a. “CatchmentSIM a stand-alone GIS Based Terrain Analysis System”, CRC for Catchment Hydrology, Australia. Http://www.toolkit.net.au/catchmentsim.
  42. Ryan, C., 2005b. “CatchmentSIM User Guide. A Stand alone GIS based terrain analysis System”, CRC for Catchment Hydrology, Australia.
  43. http://www.toolkit.net.au/catchmentsim
  44. Ryan, C., 2005c. “CatchmentSIM CSTalk Macro Reference Guide”, CRC
  45. for Catchment Hydrology, Australia. http://www.toolkit.net.au/catchmentsim.
  46. Ryan, C., and Boyd, M., 2003. “CATCHMENTSIM: a new Gis Tool for Topographic Geo-computation and hydrologic modeling. The Institution of
  47. Engineers”, Australia 28th International Hydrology and Water Resources
  48. Symposium 10 - 14 November 2003 Wollongong, NSW.
  49. Salim, E. 2004. PembangunanBerkelanjutan Tantangan dan Harapan.
  50. Makalah Konferensi Nasional XVII Badan Kerjasama Pusat Studi Lingkungan (BK-PSL) Makassar, 15-17 September 2004.
  51. Tarboton, D. G., 1989, “The analysis of river basins and channel networks using digital terrain data, Sc.D. Thesis”, Department of Civil Engineering,
  52. M.I.T., Cambridge, MA, (Also
  53. Tarboton, D. G., 1997, “A New Method for the Determination of Flow
  54. Directions and Contributing Areas in Grid Digital Elevation Models”, Water
  55. Resources Research, 33(2): 309-319.
  56. Trisakti, B. 2009. Pengembangan Model Analisis Banjir berdasarkan Data
  57. Penginderaan Jauh , LAPAN, Jakarta.
  58. Wise S, 2000, “Assessing the quality for hydrological applications of digital elevation models derived from contours”, Hydrological Processes,
  59. (11), 1909-1929.