Oligosaccharides, an Alternative to Antibiotics Growth Promotant: A Review

Nurmeiliasari

Jurusan Peternakan, Fakultas Pertanian Universitas Bengkulu

ABSTRACT

Poultry industry has been rocketed due to a high demand on poultry products. In order to minimize the production cost, poultry producers have been encouraged to use antibiotics as growth promotants to maximize the production and to control disease. It is evident that antibiotics utilization in poultry industry becomes a boomerang to the poultry industry itself, since consumers have rejected poultry products containing antibiotics for its resistance to certain bacteria. Prebiotics were then used to replace antibiotics. This growth promotants; however, have some limitation such as lack viability, stability and inability to be established in the gut microflora due to its gastric acid and bile acid concentrations. Recently, another alternative has been studied. It is now recommended for the poultry producers to use safe growth promotants such as prebiotics oligosaccharides. There are some classes of oligosaccharides which are obvious to be beneficial for poultry industry to produce antibiotics growth promotants free products such as fructooligosaccharides, galactooligosaccharides, mannan oligosaccharides, lactosucrose, and xylooligosaccharides. They are recommended because they usually contain of commonly consumed food such as wheat, bananas, garlic, onion and yeast. These can be good alternatives to replace the use of antibiotics growth promotants without changing the poultry production performance.

Key words: growth promotant, antibiotics, oligosaccharides, safe poultry products

ABSTRAK

Kata kunci: promotant pertumbuhan, antibiotik, oligosakarida, produk unggas yang aman.

Introduction

Poultry industry has been rocketed due to a high demand on poultry products. In order to minimize the production cost, poultry producers have been encouraged to use antibiotics as growth promotants to maximize the production. There has been some research on interaction between nutrition and health status (Grieshop, 2003). Moore et. al. (1946), cited in Waldroup, Fritts and Fenglan Yan, (2003), states that the first utilization of antibiotics on diet was streptomycin, which was used to more than 50 years ago. During that period, antibiotics were used to control disease and as growth promotants as well.

However, it is evident that antibiotics utilization in poultry industry becomes a boomerang to the poultry industry itself, since consumers have rejected poultry products containing antibiotics. This is due the issue of
antibiotics resistance in certain bacteria (Hooge, 2003). For example, in US and Canada, antibiotics growth promotants have been banned. In addition, in Europe, antibiotics growth promotants used are limited. Only avilamycin and bambermycin are permitted to be used on diet (Hooge, 2003).

Therefore, a new generation of growth promotants was introduced. Prebiotics were then used to replace antibiotics. This growth promotants; however, have some limitation such as lack viability, stability and inability to be established in the gut microflora. This is because of the level of gastric acid and bile acid (Kannan, Karunakaran, Balakhrisan and Prabhasak, 2005).

Recently, another alternative has been studied. It is now recommended for the poultry producers to use safe growth promotants. Prebiotics oligosaccharides are recommended because they usually contain of commonly consumed food such as wheat, bananas, garlic, onion and yeast (Flickinger, 2003). There are some classes of oligosaccharides which are obvious to be beneficial for poultry industry to produce antibiotics growth promotants free products such as fructooligosaccharides, galactooligosaccharides, mannoligosaccharides, lactosucrose, and xylooligosaccharides (Revington, 2002, Flickinger, 2003). These can be good alternatives to replace the use of antibiotics growth promotants without changing the poultry production performance. This paper is aimed to give a brief report on the use of oligosaccharises as growth promotants in poultry production.

Antibiotics versus oligosaccharides

Antibiotics have been used for many years to control disease and as growth promotants in poultry (Waldroup, Fritts and Fenglan Yan, 2003), to improve digestion and promote better bird performance (Barton, 2000, Pelicano et. al.,2004). With subtherapeutic dosage, antibiotics are proven to increase weight gain and feed conversion (Pelicano et. al., 2004). However, there have been many investigations on the raising effect of antibiotics resistant in humans because of consuming animal's products containing antibiotics (Revington, 2002, Waldroup, Fritts and Fenglan Yan, 2003). Therefore, the utilization of antibiotics is regulated and controlled. For example, in Australia, there are three points of control. Firstly, importation is controlled by permit system. Secondly, at registration level, the utilization is very strict. Finally, a control of use which allows the poultry producer to use them as growth promotants (Barton, 2000).

Revington (2002) stated that the issue is real. Further, resistance may be acquired through some ways such as De novo resistance and horizontal flow of genetic material. Single or multiple genetic mutations has been known to cause De novo resistance. In addition, another resistance arises through vertical flow of genetic material (Davison, 1999, Revington, 2002). For example, antibiotics resistant pathogen through the food chain and the risk of antibiotic resistance genes from animal gut microflora to human pathogen (Barton, 2000). It is known that resistance to one class compound of antibiotics tends to cause resistance to other compounds of antibiotics (Revington, 2002).

Antibiotics used in poultry production make animals products as potential reservoir which is obvious to be an entrance of this resistance into the human population (Revington, 2002). As a matter of fact, vancomycin resistance enterococci which have been widely used as human therapeutic found to accumulate in human body. A study on antibiotics residue by Low (1999) cited by Revington (2002) indicated that the level of vancomycin resistance enterococci found in Europe is much higher compared to the U.S. The observation showed that there was a very high level of vancomycin resistance enterococci found from isolated sewage, animal waste, meat products and the feces of healthy people. A decline on the level of vancomycin resistance enterococci observed in isolated meat product and gut microflora of healthy people immediately after the use of avoparcin being banned. It is obvious that some particular antibiotics used as growth...
promotants in poultry production have led to a developed resistance. Then, the poultry producers use therapeutic antibiotic as antibiotic growth promotants which has been argued to be controllable. Even though, a higher use rates, it is argued the application in many ways can still minimize the possibility of development resistance which results are not known so far (Revington, 2002).

There are three strategies to promote the growth without using antibiotics growth promotants; firstly there should be regular sanitation, pest control, litter management and biosecurity to reduce pathogenic agents in the production sites. Secondly, increment of immune status of the poultry by vaccination (Revington, 2003). Finally, it is challenging to set some nutritional strategies and additives (Revington, 2002, Flickinger, 2003). This paper will discuss the nutritional strategies and additive which is focused on the utilization of oligosaccharides only.

Oligosaccharides are sweet food component, approximately 0.3-0.6 times the sweetness of sucrose. They are indigestible-water soluble substances with low energy. Therefore, they can be used as low-calorie bulking agent (Flickinger, 2003). Some research using animal models showed that oligosaccharides can positively impact nutrient metabolism, improving glucose tolerance and reducing plasma ammonia and lipid concentration (Yamashita et. al., 1984 cited in Flickinger, 2003). This is an indication that certain oligosaccharides can be used to treat diabetes or renal problems.

Classes of oligosaccharides are as follows: fructooligosaccharides, galactooligosaccharides, mannan oligosaccharides, lactosucrose, and xylooligosaccharides (Revington, 2002, Flickinger, 2003). Fructooligosaccharides (FOS) are widely used since they have ability to suppress the pathogenic microorganisms and enhance the beneficial microorganisms which significantly affect the gastrointestinal health (Grieshop, 2003). Moreover, a research on different levels of FOS on diet showed that they are not digested by mammalian enzymes and go through lower intestine where they act as selective nutrients for certain bacterial populations (Tokunaga et. al., 1989 cited in Orban, Patterson, Adeola, Sutton and Richards, 1996). Undefined cultures of anaerobic bacteria mixed with FOS on diet showed to be more effective to reduce Salmonella spp. Colonization than cultures treatment without FOS (Ferket, Parks and Grimes, 2002). In human, various diets contain FOS showed to improve intestinal microbial balance and regulating colonic function (Flickinger, 2003).

Another class of oligosaccharides, mannan oligosaccharides can be extracted from various sources such as yeast and copra meal (Kannan, Karunakaran, Balakhrisnan and Prabhakar, 2005). These treatments on broiler showed a significant reduction on abdominal fat (Kannan, Karunakaran, Balakhrisnan and Prabhakar, 2005). A study by Zdunczyk et. al. (2005) indicated that different levels of MOS on diet can decrease the colal E. coli. Moreover, dietary mannan oligosaccharides (palm kernel meal) can increase non-pathogenic bacteria such as Bifidobacterium spp. and lactobacillus spp.; however this diet can reduce pathogenic bacteria such as Enterobacteriaceae group and reduce susceptibility of Salmonella enteriditis in young chicken (Fernandez, Hinton, and van Gils, 2002). Mannan oligosaccharides absorb pathogenic bacteria, instead of attaching to the intestinal epithelial cells, the bacteria move through intestine. Therefore, they have been successful to inhibit the pathogenic microbes such as Salmonella typhimurium in broilers. It is reported that five of seven strains of E. coli and seven of ten strains of Salmonella typhimurium and Salmonella enteriditis agglutinated mannan oligosaccharides and Saccharomyces cerevisiae cells (Ferket, Parks and Grimes, 2002). Yet, this also showed that dietary mannan oligosaccharides (Saccharomyces cerevisiae, NCYC 1026) had insignificant action to reduce Salmonella sp. (Ferket, Parks and Grimes, 2002). A treatment of mannan oligosaccharides on dogs diet showed an increase in fecal bacteria, number of lymphocytes and increase in serum immunoglobulin IgA to represent an increment on systemic immune status. Similarly, in rats, mannan oligosaccharides can stimulate mucosal immune response (Flickinger, 2003). A comparative study using
antibiotics and mannan oligosaccharides on
Turkey industry by Ferket, Parks and. Grimes
(2002) indicated that although antibiotics seem
to have a bigger growth rate, however they
have potential danger which is harmful for
consumers. Mannan oligosaccharides; on the
other hand, has a unique mechanism which
can enhance the defence mechanism by
blocking the colonization and contact to
pathogenic agents (Ferket, Parks and. Grimes,
2002). It can be generalized that there are
certain classes of oligosaccharides which can
be used as growth promoters on poultry due
to their ability to create balance gut microflora.

Conclusion
Due to a high demand on poultry
products, poultry producers have been trying
to maximize the production by increasing the
growth performance and maximizing feed
conversion. In order to reach the goal,
antibiotics have been widely used as growth
promotants because with subtherapeutic
dosage they are proven to increase weight
and feed conversion. However, the
pathogenic-bacteria resistant contents in
animal product treated with antibiotics have
alerted consumers. As a result, poultry
producer are warned to not use antibiotics to
raise poultry. Therefore, nowadays, many of
poultry producers are no longer using
antibiotic to maximize the production
performance of poultry. Instead of using
antibiotics as growth promoters, there is an
alternative to promote the production.
Oligosaccharides and their classes have been
proven to decrease the colonization of
pathogenic bacteria such as Salmonella spp. and
E. coli. As a result, balance gut microflora can
be maintained. However, there is a lot of
research to be done to know the best level of
oligosaccharides on diet and or being used
with other additives to promote poultry
growth.

References
Barton, M.D., 2000 Antibiotic use in animal fed
and its impact on human health.

Davison, J. 1999 Genetic exchange between
bacteria in the environment. Plasmid
42(2):73-91.

Ferket, P.R., C.W. Parks and J.L. Grimes. 2002.
Benefits of dietary antibiotic and
mannan-oligosaccharides supplementation
for poultry. Multi-state poultry meeting
May 14-16.

2002. Dietary mannan-oligosaccharides and
their effect on chicken caecal
microflora in relation to salmonella
enteritidis colonization. Avian
pathology 31:49-58.

Flickinger, E.A. 2003. Oligosaccharides as
functional food: can we improve gut
health? Nutritional biotechnology in the
feed and food industries. Proceeding of
Alltech’s 19th Annual Symposium: 345-
353. Edited by Lyons, T.P. and K.A.
Jaques, Nottingham. University Press,
UK.

Grieshop, C.M. 2003. The interaction of
nutrition and the immune system: a
discussion on the role of energy, protein,
and oligosaccharides. Nutritional
biotechnology in the feed and food
industries. Proceeding of Alltech’s 19th
Annual Symposium: 499-507. Edited by
Lyons, T.P. and K.A. Jaques,
Nottingham. University Press, UK.

Hooge, D.M. 2003. Dietary mannan
oligosaccharides improve broiler and
turkey performance: meta-analysis of
pen trials around the world. Nutritional
biotechnology in the feed and food
industries. Proceeding of Alltech’s 19th
Annual Symposium: 114-124. Edited by
Lyons, T.P. and K.A. Jaques,
Nottingham. University Press, UK.

Kannan, M., R. Karunakaran, V. Balakhrisnan
and T.G. Prabhakar, 2005. Influence of
prebiotics supplementation on lipid
profile of broilers. International Journal
of poultry science 4(12):994-997

Manson, J.M., John M.B. Smith and Gregory M.
Cook, 2004 Persistence of vancomycin-
resistant enterococci in New Zealand
broilers after discontinuation of
avoparcin use. Applied and
environmental microbiology 70(10): 5764-5768.

