KLASIFIKASI HABITAT PERAIRAN DANGKAL BERBASIS OBJEK DENGAN ALGORITMA SVM DAN KNN PADA CITRA WORLDVIEW 2 DAN CITRA SPOT 6 DI GUSUNG KARANG LEBAR

Esty Kurniawati(1), Vincentius P. Siregar(2), I Wayan Nurjaya(3),
(1) Universitas Maritim Raja Ali Haji, Indonesia
(2) Departemen Ilmu dan Teknologi Kelautan, IPB University, Bogor, Indonesia, Indonesia
(3) Departemen Ilmu dan Teknologi Kelautan, IPB University, Bogor, Indonesia, Indonesia

Abstract


This study uses the Object Based Image Analysis (OBIA) approach for mapping shallow-water benthic habitats in Kepulau Seribu. This study aims to compare the capabilities of the classification techniques of Support Vector Machin algorithm and k-Nearest Neighbor on Worldview and SPOT Satellite Images. The selection of SVM and KNN algorithms in the classification process has an influence on the final results of image processing. The results show that the overall accuracy in the Worldview algorithm SVM image is 76% and KNN is 80%, while for SPOT imagery they are 73% and 77% respectively. The results of this study indicate that the SVM and KNN algorithms are able to map the shallow water benthic habitat well in Wordview 2 and SPOT 6 imagery.

Full Text:

PDF

References


Andrefouet S., Muller-Karger F., Hochberg E., Hu C., Carder K. 2001. Change detection in shallow coral reef environments using Landsat 7 ETM+ data. Remote Sensing of Environment, 79, 150–162.

Benfield SL, Guzman HM, Mair JM, Young JAT. 2007. Mapping the distribution of coral reefs and associated sublittoral habitats in pacific panama: a comparison of optical satellite sensors and classification methodologies. International journal of remote sensing. 28: 5047-5070.

Blaschke T., Geoffrey J. Hay, Maggi Kelly, Stefan Lang, Peter Hofmann, Elisabeth Addink, Raul Queiroz Feitosa, Freek van der Meer, Harald van der Werff, Frieke van Coillie, Dirk Tiede. 2014. Geographic Object-Based Image Analysis – Towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing.

Gou J.P., L. Du, Y. Zhang, T. Xiong. 2012. A new distance-weighted k-nearest neighbor classi?er, J. Inform. Comput Sci. 9(6).1429-1436.

Green, E.P., P.J. Mumby, A.J. Edwards, and C.D. Clark. 2000. Remote sensing handbook for tropical coastal management. UNESCO. 56p.

Mountrakis G, Im J, Ogole C. 2011. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 66(3):247–259. doi:10.1016/j.isprsjprs.2010.11.001.

Nugroho A.S., Arief B.W., Dwi H. 2003. Support Vector Machine, Teori dan Aplikasinya dalam Bioinformatika.

Phinn SR, Roelfsema CM, Mumby PJ. 2011. Multi-scale, Object-based Image Analysis for Mapping Geomorphic and Evological Zones on Coral Reefs. Internasional Journal of Remote Sensing. 33:3768-3797.

Prabowo N. Wantona, Vincentius P. Siregar, dan Syamsul Bahri Agus. 2018. Klasifikasi Habitat Bentik Berbasis Objek dengan Algoritma Support Vector Machines dan Decision Tree Menggunakan Citra Multispektral Spot-7 di Pulau Harapan dan Pulau Kelapa. Jurnal Ilmu dan Teknologi Kelautan Tropis. Vol. 10 No. 1, Hlm. 123-134.

Siregar V. P., N W Prabowo, S B Agus, T Subarno. 2018. The effect of atmospheric correction on object based image classification using SPOT-7 imagery: a case study in the Harapan and Kelapa Islands. Earth and Environmental Science.

Siregar V. P., S B Agus, T Subarno, N W Prabowo. 2018. Mapping shallow waters habitats using OBIA by applying several approaches of depth invariant index in North Kepulauan Seribu. Earth and Environmental Science.

Trimble. 2014. Ecognition developer: User guide. Trimble. Munich, Germany. 289p.

Ventura Daniele, Andrea Bonifazi, Maria Flavia Gravina, Andrea Belluscio and Giandomenico Ardizzone. 2018. Mapping and Classi?cation of Ecologically Sensitive Marine Habitats Using Unmanned Aerial Vehicle (UAV) Imagery and Object-Based Image Analysis (OBIA). Remote Sensing.

Wahidin Nurhalis, Vincentius P. Siregarc, Bisman Nababanc, Indra Jayac, Sam Wouthuyzend. 2015. Object-based image analysis for coral reef benthic habitat mapping with several classification algorithms. Procedia Environmental Sciences.

Whiteside TG, Boggs GS, Maier SW. 2011. Comparing Object-Based and PixelBased Classifications for Mapping Savannas. International Journal of Applied Earth Observation and Geoinformation. 13(6): 884-893.

Zhu AG., Blumberg DG. 2002. Classification using ASTER data and SVM algorithms; The Case Study of Beer Sheve, Israel. Rmote Sens Environ. 80(2):233-240.




DOI: https://doi.org/10.31186/jenggano.7.1.%25p

Article Metrics

 Abstract Views : 0 times
 PDF Downloaded : 0 times

Refbacks

  • There are currently no refbacks.


Indexing by :

Google ScholarHasil gambar untuk sinta ristekdiktiBASE LogoFind in a library with WorldCat


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JURNAL ENGGANO

Marine Science Study Program. University of Bengkulu. Laboratorium Pertanian Building, Jl. W.R. Supratman. Kandang Limun 38371. Bengkulu, Indonesia. Tel/fax: +62-736-21170/21884.Email:jurnalenggano@unib.ac.id