Main Article Content

Abstract

Morphological and functional group analysis was carried out to study the appearance of micro and molecular structures contained in sisal fibers before and after chemical scouring and bleaching treatment. The scouring and bleaching process lasts for 1 hour with continuous stirring using a magnetic stirrer. Scouring was carried out with 6% NaOH solution while Bleaching was carried out with a solution of 10 g / L NaOH and 100 ml / L H2O2. Scanning Electron Microscopy (SEM) was used to identify the surface appearance and diameter of the fibers before and after the scouring and bleaching processes. Fourier transform infrared (FTIR) spectroscopy is used to identify functional groups in fibers. The Bleaching  process shows that the functional groups identified are the same as those of pure cellulose or alpha cellulose, namely -CH2, C-O, C = C, -CH3, C?C, and -OH, C-H. Sisal fibers with a diameter between 100 - 150 µm break down (fibrillate) into smaller fibers after the scouring (diameter: ?12 µm) and bleaching (diameter: ?7µm) processes. Thus, scouring and bleaching have caused significant changes in the morphological and microstructure of the fiber surface and also the functional groups that the sisal fiber has after the bleaching process is the same as pure fiber.

Keywords

Sisal Scouring Bleaching FTIR SEM

Article Details

Author Biography

Purwanto Purwanto, Polimarin

Nautical Department
How to Cite
Purwanto, P., Suharso, A. R., & Kurniawan, F. S. (2021). Analisis Pengaruh Perlakuan Kimia terhadap Morfologi dan Gugus Fungsional Serat Sisal. Newton-Maxwell Journal of Physics, 2(1), 22–26. https://doi.org/10.33369/nmj.v2i1.15262

References

  1. Abdul Khalil, H. P. S., Bhat, A.H., Ireana Yusra, A.F., 2012 Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polimers, 87, 963-979.
  2. Zimmermann, T., Pohler, E., Geiger, T., 2004, Cellulose Fibrils for Polymer Reinforcement, Advanced Engineering Science, 6(9), 754-761
  3. Indriani, I., Widiawati, D., 2012, Eksplorasi Struktur Serat Tanaman Kenaf (Hibiscus Cannabinus L.) Pada Teknik Tenun ATBM Sebagai Bahan Baku Tekstil, Jurnal Tingkat Sarjana Seni Rupa Dan Desain, vol. 1.
  4. Siqueira, G., Bras, J., Dufresne, A., 2010, Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications, Journal of Polymers, 2, 728–765.
  5. Sosiati, H., Harsojo, Soekrisno, Supatmi, Triyana, K., 2012, Characterization of Natural Cellulose from Kenaf Fiber, ICOPIA, Yogyakarta.
  6. Dahal, K. R., Utomo, B.I., Brink, M., 2003, Agave sisalana Perrine, In: Brink, M., and Escobin, R.P., (Editors): Plant Resources of South-East Asia No. 17, Fibre Plants.
  7. Turbak, A. F., Snyder, F. W., Sandberg, K.R., 1983, Microfibrillated Cellulose, A New Cellulose Product: Properties, Uses and Chemichal Potential. Journal of Applied Polymer Symposium, 37:815-827
  8. Subyakto, Hermiati, E., Yanto, D.H.Y., Fitria, Budiman, I., Ismandi, Masruchin, N., Subiyanto, B., 2009, Proses Pembuatan Serat Selulosa Berukuran Nano dari Sisal (Agave sisalana) dan Bambu Betung (Dendrocalamus asper), Berita Selulosa, 44, 2, 57–65.
  9. Zaini, L. H., 2013, Janoobi M., Tahir, P. Md., Karimi, S., Isolation and Characterization of Cellulose Whiskers from Kenaf (Hibiscus cannabinus L.) Bast Fibers, Scientific Research, Journal of Biomaterials and Nanobiotechnology, , 4, 37-44.
  10. Modibbo U. U., Aliyu B. A. and Nkafamiya I. I., 2009, “The Effect of Mercerization Media on the Physical Properties of Local Plant Bast Fibers”, International Journal of Physical Sciences 4, 698-704.
  11. Shi J., Shi S. Q., Barnes, H. M., Pittman C. U., Jr., 2011, “A Chemical Process for Preparing Cellulosic Fibers Hierarcically from Kenaf Bast Fibers”, BioResources 6, 879-890.
  12. Zhang, T., 2003, Improvement of Kenaf Yarn for Apparel Application, Thesis, Graduate Faculty of The Louisiana State University and Agricultural and Mechanical College, USA.
  13. Jonoobi, M., Harun, J., Shakeri, A., Misra, M., & Oksman, K., 2009, Chemical compo-sition, crystallinity, and thermal degradation of bleached and unbleached kenafbast (Hibiscus cannabinus) pulp and nanofibers. BioResources, 4(2), 626–639.