Main Article Content
Abstract
Keywords
Article Details
Copyright (c) 2022 Umi Salamah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- R. A. Atmoko, H. Y. Riskiawan, D. P. S. Setyohadi, and S. Kautsar, “The online monitoring system of toxic gas levels in the Ijen Mountain area,” AIP Conf. Proc., vol. 2278, no. October, 2020, doi: 10.1063/5.0014799.
- N. Habibie et al., “CO 2 Monitoring System for Prototype of Building Air Quality Management Using,” vol. 2, no. December, pp. 49–60, 2016, doi: 10.21108/ijoict.2016.22.117.
- D. M. Krishnamoorthi, “IOT based Air Quality Monitoring System,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 8, no. 7, pp. 119–124, 2020, doi: 10.22214/ijraset.2020.7022.
- P. D. Lapshina, S. P. Kurilova, and A. A. Belitsky, “Development of an Arduino-based CO2 Monitoring Device,” Proc. 2019 IEEE Conf. Russ. Young Res. Electr. Electron. Eng. ElConRus 2019, pp. 595–597, 2019, doi: 10.1109/EIConRus.2019.8656915.
- S. a Rice, “Health Effects of Acute and Prolonged Co 2 Exposure in Normal and Sensitive Populations *,” Third Anu. Conf. Carbon Sequestration, pp. 5–8, 2003.
- Z. Achir and A. Darmadi, “Pengaruh Suhu Terhadap Sifat Sifat Gas-Cairan pada Absorpsi CO2 Menggunakan a-MDEA,” J. Rekayasa Kim. dan Lingkung., vol. 13, no. 1, pp. 24–32, 2018.
- H. Sugawara, S. Ishidoya, Y. Terao, Y. Takane, Y. Kikegawa, and K. Nakajima, “Anthropogenic CO2 Emissions Changes in an Urban Area of Tokyo, Japan, Due to the COVID-19 Pandemic: A Case Study During the State of Emergency in April–May 2020,” Geophys. Res. Lett., vol. 48, no. 15, pp. 1–10, 2021, doi: 10.1029/2021GL092600.
- R. Sussmann and M. Rettinger, “Can we measure a COVID-19-related slowdown in atmospheric CO2 growth? Sensitivity of total carbon column observations,” Remote Sens., vol. 12, no. 15, 2020, doi: 10.3390/RS12152387.
- H. Chen and J. Markham, “Using microcontrollers and sensors to build an inexpensive CO2 control system for growth chambers,” Appl. Plant Sci., vol. 8, no. 10, pp. 8–12, 2020, doi: 10.1002/aps3.11393.
- M. Izzuddin, “Sistem Telemetri Pemantau Gas Karbon Dioksida (Co2) Menggunakan Jaringan Wifi,” Youngster Phys. J., vol. 3, no. 3, pp. 243–248, 2014.
- T. J. Roberts et al., “Electrochemical sensing of volcanic gases,” Chem. Geol., vol. 332–333, pp. 74–91, 2012, doi: 10.1016/j.chemgeo.2012.08.027.
- D. R. Gibson and C. MacGregor, “Self powered non-dispersive infra-red CO2 gas sensor,” J. Phys. Conf. Ser., vol. 307, no. 1, pp. 0–6, 2011, doi: 10.1088/1742-6596/307/1/012057.
- A. Amsar, K. Khairuman, and M. Marlina, “Perancangan Alat Pendeteksi CO2 Menggunakan Sensor MQ-2 Berbasis Internet Of Thing,” METHOMIKA J. Manaj. Inform. dan Komputerisasi Akunt., vol. 4, no. 1, pp. 73–79, 2020, doi: 10.46880/jmika.v4i1.143.
- D. I. . Kasenda, V. A. Suoth, and H. I. . Mosey, “Rancang Bangun Alat Ukur Konsentrasi Gas Sulfur Dioksida (SO2) Berbasis Mikrokontroller Dan Sensor MQ136,” J. MIPA, vol. 8, no. 1, p. 28, 2019, doi: 10.35799/jm.8.1.2019.22905.
- S. Widodo, M. M. Amin, and A. Supani, “Design of Indoor Room Gas CO and SO2 Detection Based on Microcontroller Using Fuzzy Logic,” E3S Web Conf., vol. 125, no. 201 9, pp. 0–4, 2019, doi: 10.1051/e3sconf/201912523013.
- F. Ayari, E. Mirzaee- Ghaleh, H. Rabbani, and K. Heidarbeigi, “Using an E-nose machine for detection the adulteration of margarine in cow ghee,” J. Food Process Eng., vol. 41, no. 6, 2018, doi: 10.1111/jfpe.12806.
- H. Karami, M. Rasekh, and E. Mirzaee-Ghaleh, “Qualitative analysis of edible oil oxidation using an olfactory machine,” J. Food Meas. Charact., vol. 14, no. 5, pp. 2600–2610, 2020, doi: 10.1007/s11694-020-00506-0.
- T. Rahajoeningroem and F. Treska, “Rancang Bangun Warning System dan Monitoring Gas Sulfur Dioksida (SO2) Gunung Tangkuban Parahu VIA SMS Gateway Berbasis Mikrokontroler Menggunakan Sensor MQ-136,” J. Telekontran, vol. 1, no. 2, pp. 63–72, 2013.
- S. T. Wilson, T. K. Sebastine, M. Daniel, and V. Martin, “Smart trash bin for waste management using odor sensor based on IoT technology,” vol. 5, no. 2, pp. 2048–2051, 2019.
- U. Salamah, Q. Hidayah, and D. Y. Kusuma, “Rancang Bangun Mesin Replika Penghasil Gas Vulkanik sebagai Studi Awal Monitoring Erupsi Gunung Berapi,” J. Teor. dan Apl. Fis., vol. 9, no. 1, pp. 65–70, 2021, doi: 10.23960/jtaf.v9i1.2710.
- A. I. Abdullateef, Ekwemuka, Itopa, Makinwa, and S. A. Alim, “Fingerprint Based Student Attendance Management System With Automatic Excel Computation,” LAUTECH J. Eng. Technol., vol. 12, no. 2, pp. 123–135, 2018, [Online]. Available: https://www.laujet.com/index.php/laujet/article/view/333.
- N. O.Nwazor and U. Elele, “Computerized Automatic Three Phase Data Logger for Power Stations,” Int. J. Eng. Trends Technol., vol. 67, no. 3, pp. 44–48, 2019, doi: 10.14445/22315381/ijett-v67i3p207.
- A. J. Brown et al., “The case for a modern multiwavelength, polarization-sensitive LIDAR in orbit around Mars,” J. Quant. Spectrosc. Radiat. Transf., vol. 153, pp. 131–143, 2015, doi: 10.1016/j.jqsrt.2014.10.021.
- T. A. Safitrin, Lita; Supadi; Prijo, “Rancang Bangun Sistem Pendeteksi Kadar CO2 Hasil Ekspirasi,” J. Fis. dan Ter., vol. 4, no. 1, pp. 120–129, 2016.
- S. A. Mane, D. Y. Nadargi, J. D. Nadargi, O. M. Aldossary, M. S. Tamboli, and V. P. Dhulap, “Design, development and validation of a portable gas sensor module: A facile approach for monitoring greenhouse gases,” Coatings, vol. 10, no. 12, pp. 1–10, 2020, doi: 10.3390/coatings10121148.
References
R. A. Atmoko, H. Y. Riskiawan, D. P. S. Setyohadi, and S. Kautsar, “The online monitoring system of toxic gas levels in the Ijen Mountain area,” AIP Conf. Proc., vol. 2278, no. October, 2020, doi: 10.1063/5.0014799.
N. Habibie et al., “CO 2 Monitoring System for Prototype of Building Air Quality Management Using,” vol. 2, no. December, pp. 49–60, 2016, doi: 10.21108/ijoict.2016.22.117.
D. M. Krishnamoorthi, “IOT based Air Quality Monitoring System,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 8, no. 7, pp. 119–124, 2020, doi: 10.22214/ijraset.2020.7022.
P. D. Lapshina, S. P. Kurilova, and A. A. Belitsky, “Development of an Arduino-based CO2 Monitoring Device,” Proc. 2019 IEEE Conf. Russ. Young Res. Electr. Electron. Eng. ElConRus 2019, pp. 595–597, 2019, doi: 10.1109/EIConRus.2019.8656915.
S. a Rice, “Health Effects of Acute and Prolonged Co 2 Exposure in Normal and Sensitive Populations *,” Third Anu. Conf. Carbon Sequestration, pp. 5–8, 2003.
Z. Achir and A. Darmadi, “Pengaruh Suhu Terhadap Sifat Sifat Gas-Cairan pada Absorpsi CO2 Menggunakan a-MDEA,” J. Rekayasa Kim. dan Lingkung., vol. 13, no. 1, pp. 24–32, 2018.
H. Sugawara, S. Ishidoya, Y. Terao, Y. Takane, Y. Kikegawa, and K. Nakajima, “Anthropogenic CO2 Emissions Changes in an Urban Area of Tokyo, Japan, Due to the COVID-19 Pandemic: A Case Study During the State of Emergency in April–May 2020,” Geophys. Res. Lett., vol. 48, no. 15, pp. 1–10, 2021, doi: 10.1029/2021GL092600.
R. Sussmann and M. Rettinger, “Can we measure a COVID-19-related slowdown in atmospheric CO2 growth? Sensitivity of total carbon column observations,” Remote Sens., vol. 12, no. 15, 2020, doi: 10.3390/RS12152387.
H. Chen and J. Markham, “Using microcontrollers and sensors to build an inexpensive CO2 control system for growth chambers,” Appl. Plant Sci., vol. 8, no. 10, pp. 8–12, 2020, doi: 10.1002/aps3.11393.
M. Izzuddin, “Sistem Telemetri Pemantau Gas Karbon Dioksida (Co2) Menggunakan Jaringan Wifi,” Youngster Phys. J., vol. 3, no. 3, pp. 243–248, 2014.
T. J. Roberts et al., “Electrochemical sensing of volcanic gases,” Chem. Geol., vol. 332–333, pp. 74–91, 2012, doi: 10.1016/j.chemgeo.2012.08.027.
D. R. Gibson and C. MacGregor, “Self powered non-dispersive infra-red CO2 gas sensor,” J. Phys. Conf. Ser., vol. 307, no. 1, pp. 0–6, 2011, doi: 10.1088/1742-6596/307/1/012057.
A. Amsar, K. Khairuman, and M. Marlina, “Perancangan Alat Pendeteksi CO2 Menggunakan Sensor MQ-2 Berbasis Internet Of Thing,” METHOMIKA J. Manaj. Inform. dan Komputerisasi Akunt., vol. 4, no. 1, pp. 73–79, 2020, doi: 10.46880/jmika.v4i1.143.
D. I. . Kasenda, V. A. Suoth, and H. I. . Mosey, “Rancang Bangun Alat Ukur Konsentrasi Gas Sulfur Dioksida (SO2) Berbasis Mikrokontroller Dan Sensor MQ136,” J. MIPA, vol. 8, no. 1, p. 28, 2019, doi: 10.35799/jm.8.1.2019.22905.
S. Widodo, M. M. Amin, and A. Supani, “Design of Indoor Room Gas CO and SO2 Detection Based on Microcontroller Using Fuzzy Logic,” E3S Web Conf., vol. 125, no. 201 9, pp. 0–4, 2019, doi: 10.1051/e3sconf/201912523013.
F. Ayari, E. Mirzaee- Ghaleh, H. Rabbani, and K. Heidarbeigi, “Using an E-nose machine for detection the adulteration of margarine in cow ghee,” J. Food Process Eng., vol. 41, no. 6, 2018, doi: 10.1111/jfpe.12806.
H. Karami, M. Rasekh, and E. Mirzaee-Ghaleh, “Qualitative analysis of edible oil oxidation using an olfactory machine,” J. Food Meas. Charact., vol. 14, no. 5, pp. 2600–2610, 2020, doi: 10.1007/s11694-020-00506-0.
T. Rahajoeningroem and F. Treska, “Rancang Bangun Warning System dan Monitoring Gas Sulfur Dioksida (SO2) Gunung Tangkuban Parahu VIA SMS Gateway Berbasis Mikrokontroler Menggunakan Sensor MQ-136,” J. Telekontran, vol. 1, no. 2, pp. 63–72, 2013.
S. T. Wilson, T. K. Sebastine, M. Daniel, and V. Martin, “Smart trash bin for waste management using odor sensor based on IoT technology,” vol. 5, no. 2, pp. 2048–2051, 2019.
U. Salamah, Q. Hidayah, and D. Y. Kusuma, “Rancang Bangun Mesin Replika Penghasil Gas Vulkanik sebagai Studi Awal Monitoring Erupsi Gunung Berapi,” J. Teor. dan Apl. Fis., vol. 9, no. 1, pp. 65–70, 2021, doi: 10.23960/jtaf.v9i1.2710.
A. I. Abdullateef, Ekwemuka, Itopa, Makinwa, and S. A. Alim, “Fingerprint Based Student Attendance Management System With Automatic Excel Computation,” LAUTECH J. Eng. Technol., vol. 12, no. 2, pp. 123–135, 2018, [Online]. Available: https://www.laujet.com/index.php/laujet/article/view/333.
N. O.Nwazor and U. Elele, “Computerized Automatic Three Phase Data Logger for Power Stations,” Int. J. Eng. Trends Technol., vol. 67, no. 3, pp. 44–48, 2019, doi: 10.14445/22315381/ijett-v67i3p207.
A. J. Brown et al., “The case for a modern multiwavelength, polarization-sensitive LIDAR in orbit around Mars,” J. Quant. Spectrosc. Radiat. Transf., vol. 153, pp. 131–143, 2015, doi: 10.1016/j.jqsrt.2014.10.021.
T. A. Safitrin, Lita; Supadi; Prijo, “Rancang Bangun Sistem Pendeteksi Kadar CO2 Hasil Ekspirasi,” J. Fis. dan Ter., vol. 4, no. 1, pp. 120–129, 2016.
S. A. Mane, D. Y. Nadargi, J. D. Nadargi, O. M. Aldossary, M. S. Tamboli, and V. P. Dhulap, “Design, development and validation of a portable gas sensor module: A facile approach for monitoring greenhouse gases,” Coatings, vol. 10, no. 12, pp. 1–10, 2020, doi: 10.3390/coatings10121148.