Main Article Content

Abstract

The increase in CO2 gas occurred very significantly due to the use of fossil fuels, industry, forest fires, volcanic eruptions and natural gas resulting in air pollution. The dangers of CO? gas for humans can cause headaches, sweating, blurred vision, tremors, and loss of consciousness after exposure for five to ten minutes. CO2 is a poisonous gas which is physically colorless and odorless. This characteristic causes many humans to be unaware of the existence of this gas, so that it is exposed and endangers health. Therefore we need a CO2 gas detection system. The difficulty that occurs in the detection of CO2 gas is when the gas is mixed with other gases that have similar material properties. In this research, a CO2 gas detection system is designed to detect the gas when it mixes with other gases using the MQ-135 sensor. The system that has been designed and built is then compared with a standard tool, namely the xm-7000 dragger. The test data analyzed using linear regression showed the results in accordance with 2the value of R = 0.9896 with the conversion equation y = 0.0389x-76.086. With these results provide new opportunities in testing CO2 on gas mixtures that are easier and cheaper.

Keywords

CO2 gas detection mixed gas MQ-135

Article Details

How to Cite
Salamah, U., Hidayah, Q., & Kusuma, D. Y. (2022). CO2 detection system in mixed gas using MQ-135 sensor. Newton-Maxwell Journal of Physics, 2(2). https://doi.org/10.33369/nmj.v2i2.18730

References

  1. R. A. Atmoko, H. Y. Riskiawan, D. P. S. Setyohadi, and S. Kautsar, “The online monitoring system of toxic gas levels in the Ijen Mountain area,” AIP Conf. Proc., vol. 2278, no. October, 2020, doi: 10.1063/5.0014799.
  2. N. Habibie et al., “CO 2 Monitoring System for Prototype of Building Air Quality Management Using,” vol. 2, no. December, pp. 49–60, 2016, doi: 10.21108/ijoict.2016.22.117.
  3. D. M. Krishnamoorthi, “IOT based Air Quality Monitoring System,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 8, no. 7, pp. 119–124, 2020, doi: 10.22214/ijraset.2020.7022.
  4. P. D. Lapshina, S. P. Kurilova, and A. A. Belitsky, “Development of an Arduino-based CO2 Monitoring Device,” Proc. 2019 IEEE Conf. Russ. Young Res. Electr. Electron. Eng. ElConRus 2019, pp. 595–597, 2019, doi: 10.1109/EIConRus.2019.8656915.
  5. S. a Rice, “Health Effects of Acute and Prolonged Co 2 Exposure in Normal and Sensitive Populations *,” Third Anu. Conf. Carbon Sequestration, pp. 5–8, 2003.
  6. Z. Achir and A. Darmadi, “Pengaruh Suhu Terhadap Sifat Sifat Gas-Cairan pada Absorpsi CO2 Menggunakan a-MDEA,” J. Rekayasa Kim. dan Lingkung., vol. 13, no. 1, pp. 24–32, 2018.
  7. H. Sugawara, S. Ishidoya, Y. Terao, Y. Takane, Y. Kikegawa, and K. Nakajima, “Anthropogenic CO2 Emissions Changes in an Urban Area of Tokyo, Japan, Due to the COVID-19 Pandemic: A Case Study During the State of Emergency in April–May 2020,” Geophys. Res. Lett., vol. 48, no. 15, pp. 1–10, 2021, doi: 10.1029/2021GL092600.
  8. R. Sussmann and M. Rettinger, “Can we measure a COVID-19-related slowdown in atmospheric CO2 growth? Sensitivity of total carbon column observations,” Remote Sens., vol. 12, no. 15, 2020, doi: 10.3390/RS12152387.
  9. H. Chen and J. Markham, “Using microcontrollers and sensors to build an inexpensive CO2 control system for growth chambers,” Appl. Plant Sci., vol. 8, no. 10, pp. 8–12, 2020, doi: 10.1002/aps3.11393.
  10. M. Izzuddin, “Sistem Telemetri Pemantau Gas Karbon Dioksida (Co2) Menggunakan Jaringan Wifi,” Youngster Phys. J., vol. 3, no. 3, pp. 243–248, 2014.
  11. T. J. Roberts et al., “Electrochemical sensing of volcanic gases,” Chem. Geol., vol. 332–333, pp. 74–91, 2012, doi: 10.1016/j.chemgeo.2012.08.027.
  12. D. R. Gibson and C. MacGregor, “Self powered non-dispersive infra-red CO2 gas sensor,” J. Phys. Conf. Ser., vol. 307, no. 1, pp. 0–6, 2011, doi: 10.1088/1742-6596/307/1/012057.
  13. A. Amsar, K. Khairuman, and M. Marlina, “Perancangan Alat Pendeteksi CO2 Menggunakan Sensor MQ-2 Berbasis Internet Of Thing,” METHOMIKA J. Manaj. Inform. dan Komputerisasi Akunt., vol. 4, no. 1, pp. 73–79, 2020, doi: 10.46880/jmika.v4i1.143.
  14. D. I. . Kasenda, V. A. Suoth, and H. I. . Mosey, “Rancang Bangun Alat Ukur Konsentrasi Gas Sulfur Dioksida (SO2) Berbasis Mikrokontroller Dan Sensor MQ136,” J. MIPA, vol. 8, no. 1, p. 28, 2019, doi: 10.35799/jm.8.1.2019.22905.
  15. S. Widodo, M. M. Amin, and A. Supani, “Design of Indoor Room Gas CO and SO2 Detection Based on Microcontroller Using Fuzzy Logic,” E3S Web Conf., vol. 125, no. 201 9, pp. 0–4, 2019, doi: 10.1051/e3sconf/201912523013.
  16. F. Ayari, E. Mirzaee- Ghaleh, H. Rabbani, and K. Heidarbeigi, “Using an E-nose machine for detection the adulteration of margarine in cow ghee,” J. Food Process Eng., vol. 41, no. 6, 2018, doi: 10.1111/jfpe.12806.
  17. H. Karami, M. Rasekh, and E. Mirzaee-Ghaleh, “Qualitative analysis of edible oil oxidation using an olfactory machine,” J. Food Meas. Charact., vol. 14, no. 5, pp. 2600–2610, 2020, doi: 10.1007/s11694-020-00506-0.
  18. T. Rahajoeningroem and F. Treska, “Rancang Bangun Warning System dan Monitoring Gas Sulfur Dioksida (SO2) Gunung Tangkuban Parahu VIA SMS Gateway Berbasis Mikrokontroler Menggunakan Sensor MQ-136,” J. Telekontran, vol. 1, no. 2, pp. 63–72, 2013.
  19. S. T. Wilson, T. K. Sebastine, M. Daniel, and V. Martin, “Smart trash bin for waste management using odor sensor based on IoT technology,” vol. 5, no. 2, pp. 2048–2051, 2019.
  20. U. Salamah, Q. Hidayah, and D. Y. Kusuma, “Rancang Bangun Mesin Replika Penghasil Gas Vulkanik sebagai Studi Awal Monitoring Erupsi Gunung Berapi,” J. Teor. dan Apl. Fis., vol. 9, no. 1, pp. 65–70, 2021, doi: 10.23960/jtaf.v9i1.2710.
  21. A. I. Abdullateef, Ekwemuka, Itopa, Makinwa, and S. A. Alim, “Fingerprint Based Student Attendance Management System With Automatic Excel Computation,” LAUTECH J. Eng. Technol., vol. 12, no. 2, pp. 123–135, 2018, [Online]. Available: https://www.laujet.com/index.php/laujet/article/view/333.
  22. N. O.Nwazor and U. Elele, “Computerized Automatic Three Phase Data Logger for Power Stations,” Int. J. Eng. Trends Technol., vol. 67, no. 3, pp. 44–48, 2019, doi: 10.14445/22315381/ijett-v67i3p207.
  23. A. J. Brown et al., “The case for a modern multiwavelength, polarization-sensitive LIDAR in orbit around Mars,” J. Quant. Spectrosc. Radiat. Transf., vol. 153, pp. 131–143, 2015, doi: 10.1016/j.jqsrt.2014.10.021.
  24. T. A. Safitrin, Lita; Supadi; Prijo, “Rancang Bangun Sistem Pendeteksi Kadar CO2 Hasil Ekspirasi,” J. Fis. dan Ter., vol. 4, no. 1, pp. 120–129, 2016.
  25. S. A. Mane, D. Y. Nadargi, J. D. Nadargi, O. M. Aldossary, M. S. Tamboli, and V. P. Dhulap, “Design, development and validation of a portable gas sensor module: A facile approach for monitoring greenhouse gases,” Coatings, vol. 10, no. 12, pp. 1–10, 2020, doi: 10.3390/coatings10121148.