Main Article Content

Abstract

Peristiwa bola yang memantul dapat digunakan sebagai model untuk mendeskripsikan banyak sekali aspek yang ada dalam mekanika. Pada penelitian ini dirancang fenomena bouncing ball  dimana bola dijatuhkan dari ketinggian tertentu tanpa kecepatan awal dan menumbuk permukaan lantai yang keras. Penelitian ini menggunakan metode penelitian eksperimen menggunakan aplikasi Phyphox sebagai alat bantu untuk menentukan parameter-parameter yang ada pada fenomena bouncing ball . Adapun parameter yang dianalisis pada penelitian ini yaitu berupa kebergantungan energi, ketinggian, dan waktu. Hasil dari penelitian ini menunjukkan bahwa kecenderungan penurunan energi bouncing ball terhadap jumlah pantulan yang terjadi mengikuti grafik eksponensial. Pada eksperimen tahap I dengan bola kelereng berdiameter 15,2 mm diperoleh nilai penurunan energi tiap pantulan mengikuti persamaan eksponensial y=113,77 exp(-0,151x), dengan nilai . Pada eksperimen tahap II dengan bola kelereng berdiameter 15,2 mm diperoleh nilai penurunan energi tiap pantulan mengikuti persamaan eksponensial y=123,4 exp(-0,204x), dengan nilai.. Pada eksperimen tahap III dengan bola kelereng berdiameter 27,4 mm diperoleh nilai penurunan energi tiap pantulan mengikuti persamaan eksponensial y=115,01 exp(-0,176x), dengan nilai .

Keywords

bouncing ball energi ketinggian phyphox

Article Details

How to Cite
Pebralia, J. (2022). Analisis Parameter Dinamika Fenomena Bouncing Ball Berbasis Aplikasi Phyphox. Newton-Maxwell Journal of Physics, 3(1), 6–16. https://doi.org/10.33369/nmj.v3i1.21208

References

  1. R. Cross, “Behaviour of a bouncing ball,” Phys. Educ., vol. 50, no. 3, pp. 335–341, 2015, doi: 10.1088/0031-9120/50/3/335.
  2. H. Okubo and M. Hubbard, “Dynamics of the basketball shot with application to the free throw,” J. Sports Sci., vol. 24, no. 12, pp. 1303–1314, 2006, doi: 10.1080/02640410500520401.
  3. B. Gygi, B. L. Giordano, V. Shafiro, A. Kharkhurin, and P. X. Zhang, “Predicting the timing of dynamic events through sound: Bouncing balls,” J. Acoust. Soc. Am., vol. 138, no. 1, pp. 457–466, 2015, doi: 10.1121/1.4923020.
  4. J. A. F. Balista and C. Saloma, “Modified inelastic bouncing ball model for describing the dynamics of granular materials in a vibrated container,” Phys. D Nonlinear Phenom., vol. 291, pp. 17–20, 2015, doi: 10.1016/j.physd.2014.10.003.
  5. G. Avrin, I. A. Siegler, M. Makarov, and P. Rodriguez-Ayerbe, “The self-organization of ball bouncing,” Biol. Cybern., vol. 112, no. 6, pp. 509–522, 2018, doi: 10.1007/s00422-018-0776-8.
  6. M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum, “A compositional object-based approach to learning physical dynamics,” 5th Int. Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc., pp. 1–15, 2017.
  7. M. Asenov, M. Burke, D. Angelov, T. Davchev, K. Subr, and S. Ramamoorthy, “Correction to ‘vid2Param: Modelling of dynamics parameters from video,’” IEEE Robot. Autom. Lett., vol. 5, no. 2, p. 2872, 2020, doi: 10.1109/LRA.2020.2973022.
  8. S. Van Steenkiste, K. Greff, M. Chang, and J. Schmidhuber, “Relational neural expectation maximization: Unsupervised discovery of objects and their interactions,” 6th Int. Conf. Learn. Represent. ICLR 2018 - Conf. Track Proc., pp. 1–15, 2018.
  9. M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther, “A disentangled recognition and nonlinear dynamics model for unsupervised learning,” Adv. Neural Inf. Process. Syst., vol. 2017-December, no. section 5, pp. 3602–3611, 2017.
  10. M. Straeten, P. Rajai, and M. J. Ahamed, “Method and implementation of micro Inertial Measurement Unit (IMU) in sensing basketball dynamics,” Sensors Actuators, A Phys., vol. 293, pp. 7–13, 2019, doi: 10.1016/j.sna.2019.03.042.
  11. G. K. Kocur, Y. E. Harmanci, E. Chatzi, H. Steeb, and B. Markert, “Automated identification of the coefficient of restitution via bouncing ball measurement,” Arch. Appl. Mech., vol. 91, no. 1, pp. 47–60, 2021, doi: 10.1007/s00419-020-01751-x.
  12. J.-Y. Chastaing, E. Bertin, and J.-C. Géminard, “Dynamics of a bouncing ball,” Am. J. Phys., vol. 83, no. 6, pp. 518–524, 2015, doi: 10.1119/1.4906418.
  13. A. Wadhwa, “Study of the dynamic properties and effects of temperature using a spring model for the bouncing ball,” Eur. J. Phys., vol. 34, no. 3, pp. 703–713, 2013, doi: 10.1088/0143-0807/34/3/703.
  14. L. Bencsik and A. Zelei, “Effects of human running cadence and experimental validation of the bouncing ball model,” Mech. Syst. Signal Process., vol. 89, pp. 78–87, 2017, doi: 10.1016/j.ymssp.2016.08.001.
  15. T. Du et al., “A self-powered and highly accurate vibration sensor based on bouncing-ball triboelectric nanogenerator for intelligent ship machinery monitoring,” Micromachines, vol. 12, no. 2, pp. 1–14, 2021, doi: 10.3390/mi12020218.
  16. H. A. Ewar, M. E. Bahagia, V. Jeluna, R. B. Astro, and A. Nasar, “Penentuan Konstanta Pegas Menggunakan Aplikasi Phyphox Pada Peristiwa Osilasi Pegas,” J. Kumparan Fis., vol. 4, no. 3, pp. 155–162, 2021, doi: 10.33369/jkf.4.3.155-162.
  17. I. Boimau, A. Y. Boimau, and W. Liu, “EKSPERIMEN GERAK JATUH BEBAS BERBASIS SMARTPHONE MENGGUNAKAN APLIKASI PHYPHOX Infianto,” in Seminar Nasional Ilmu Fisika dan Terapannya, 2021, pp. 67–75.
  18. J. Pebralia and I. Amri, “EKSPERIMEN GERAK PENDULUM MENGGUNAKAN SMARTPHONE BERBASIS PHYPHOX: PENERAPAN PRAKTIKUM FISIKA DASAR SELAMA MASA COVID-19,” JIFP (Jurnal Ilmu Fis. dan Pembelajarannya), vol. 5, no. 2, pp. 10–14, 2021.
  19. S. Yasaroh, H. Kuswanto, D. Ramadhanti, A. Azalia, and H. Hestiana, “Utilization of the phyphox application (physical phone experiment) to calculate the moment of inertia of hollow cylinders,” J. Ilm. Pendidik. Fis. Al-Biruni, vol. 10, no. 2, pp. 231–240, 2021, doi: 10.24042/jipfalbiruni.v10i2.9237.
  20. Y. F. Ilmi, A. B. Susila, and B. H. Iswanto, “Using accelerometer smartphone sensor and phyphyox for friction experiment in high school,” J. Phys. Conf. Ser., vol. 2019, no. 1, 2021, doi: 10.1088/1742-6596/2019/1/012008.