Main Article Content

Abstract

Gold silica nanocomposite-based biosensors are performing well in sensor technology for biosensor development. Due to this biosensor has good selectivity, excellent conductivity, large surface area, efficient enhancement of electron transfer between enzymes and electrodes and good biocompatibility. Therefore, gold silica nanocomposite can be an ideal matrix for immobilization of biomolecules. This review describes the method of synthesizing gold silica nanocomposites and their characterization, interaction with biomolecules and application of gold silica nanocomposites in electrochemical biosensors.

Article Details

How to Cite
Zakiyyah, S. N., Eddy, D. R., Firdaus, M. L., & Hartati, Y. W. (2021). Application of Gold Silica Nanocomposites in Electrochemical Biosensors: A Review. PENDIPA Journal of Science Education, 5(2), 122–132. https://doi.org/10.33369/pendipa.5.2.122-132

References

  1. Argoubi, W., Sánchez, A., Parrado, C., Raouafi, N., & Villalonga, R. (2018). Label-free electrochemical aptasensing platform based on mesoporous silica thin film for the detection of prostate specific antigen. Sensors and Actuators, B: Chemical, 255, 309–315. https://doi.org/10.1016/j.snb.2017.08.045
  2. Ariffin, E. Y., Heng, L. Y., Tan, L. L., Karim, N. H. A., & Hasbullah, S. A. (2020). A highly sensitive impedimetric DNA biosensor based on hollow silica microspheres for label-free determination of E. Coli. Sensors (Switzerland), 20(5). https://doi.org/10.3390/s20051279
  3. Bagheri, E., Ansari, L., Sameiyan, E., Abnous, K., Taghdisi, S. M., Ramezani, M., & Alibolandi, M. (2020). Sensors design based on hybrid gold-silica nanostructures. Biosensors and Bioelectronics, 153, 1–11. https://doi.org/10.1016/j.bios.2020.112054
  4. Bai, Y., Yang, H., Yang, W., Li, Y., & Sun, C. (2007). Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sensors and Actuators, B: Chemical, 124(1), 179–186. https://doi.org/10.1016/j.snb.2006.12.020
  5. Carrasquilla, C., Xiao, Y., Xu, C. Q., Li, Y., & Brennan, J. D. (2011). Enhancing sensitivity and selectivity of long-period grating sensors using structure-switching aptamers bound to gold-doped macroporous silica coatings. Analytical Chemistry, 83(20), 7984–7991. https://doi.org/10.1021/ac2020432
  6. Ciaurriz, P., Fernández, F., Tellechea, E., Moran, J. F., & Asensio, A. C. (2017). Comparison of four functionalization methods of gold nanoparticles for enhancing the enzyme-linked immunosorbent assay (ELISA). Beilstein Journal of Nanotechnology, 8(1), 244–253. https://doi.org/10.3762/bjnano.8.27
  7. Eddy, D. R., Puri, F. N., & Noviyanti, A. R. (2015). Synthesis and Photocatalytic Activity of Silica-based Sand Quartz as the Supporting TiO2 Photocatalyst. Procedia Chemistry, 17, 55–58. https://doi.org/10.1016/j.proche.2015.12.132
  8. Famia, A. M., & Muldarisnur, M. (2019). Pengaruh Temperatur Sintesis Hidrotermal Terhadap Diameter Nanopartikel Seng Oksida. Jurnal Fisika Unand, 8(2), 127–132. https://doi.org/10.25077/jfu.8.2.127-132.2019
  9. Firdaus, M. L., Madina, F. E., Sasti, Y. F., Elvia, R., Ishmah, S. N., Eddy, D. R., & Cid-Andres, A. P. (2020). Silica extraction from beach sand for dyes removal: Isotherms, kinetics and thermodynamics. Rasayan Journal of Chemistry, 13(1), 249–254. https://doi.org/10.31788/RJC.2020.1315496
  10. Graczyk, A., Pawlowska, R., Jedrzejczyk, D., & Chworos, A. (2020). Gold Nanoparticles in Conjunction with Nucleic Acids as a Modern Molecular System for Cellular Delivery. Molecules, 25(204), 1–26. https://doi.org/https://doi.org/10.3390/molecules25010204
  11. Hartati, Y. W., Gaffar, S., Alfiani, D., Pratomo, U., Sofiatin, Y., & Subroto, T. (2020). A voltammetric immunosensor based on gold nanoparticle - Anti-ENaC bioconjugate for the detection of epithelial sodium channel (ENaC) protein as a biomarker of hypertension. Sensing and Bio-Sensing Research, 29(April), 100343. https://doi.org/10.1016/j.sbsr.2020.100343
  12. Hasanzadeh, M., Shadjou, N., Eskandani, M., & Guardia, M. de la. (2012). Mesoporous silica-based materials for use in electrochemical enzyme nanobiosensors. TrAC - Trends in Analytical Chemistry, 40, 106–118. https://doi.org/10.1016/j.trac.2012.06.007
  13. Hashkavayi, A. B., Raoof, J. B., & Ojani, R. (2017). Construction of a highly sensitive signal-on aptasensor based on gold nanoparticles/functionalized silica nanoparticles for selective detection of tryptophan. Analytical and Bioanalytical Chemistry, 409(27), 6429–6438. https://doi.org/10.1007/s00216-017-0588-z
  14. Khalilzadeh, B., Charoudeh, H. N., Shadjou, N., Mohammad-Rezaei, R., Omidi, Y., Velaei, K., Aliyari, Z., & Rashidi, M. R. (2016). Ultrasensitive caspase-3 activity detection using an electrochemical biosensor engineered by gold nanoparticle functionalized MCM-41: Its application during stem cell differentiation. Sensors and Actuators, B: Chemical, 231, 561–575. https://doi.org/10.1016/j.snb.2016.03.043
  15. Liu, B., Zhang, B., Cui, Y., Chen, H., Gao, Z., & Tang, D. (2011). Multifunctional gold-silica nanostructures for ultrasensitive electrochemical immunoassay of streptomycin residues. ACS Applied Materials and Interfaces, 3(12), 4668–4676. https://doi.org/10.1021/am201087r
  16. Mahon, E., Salvati, A., Baldelli Bombelli, F., Lynch, I., & Dawson, K. A. (2012). Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery.” Journal of Controlled Release, 161(2), 164–174. https://doi.org/10.1016/j.jconrel.2012.04.009
  17. Mebert, A. M., Baglole, C. J., Desimone, M. F., & Maysinger, D. (2017). Nanoengineered silica: Properties, applications and toxicity. Food and Chemical Toxicology, 109, 753–770. https://doi.org/10.1016/j.fct.2017.05.054
  18. Ojea-Jimenez, I., & Puntes, V. (2010). Instability of cationic gold nanoparticle bioconjugates: The role of citrate ions (Journal of the American Chemical Society (2009) 131 (13320-13327)). Journal of the American Chemical Society, 132(14), 5322. https://doi.org/10.1021/ja101213s
  19. Rajabnejad, S. H., Badibostan, H., Verdian, A., Karimi, G. R., Fooladi, E., & Feizy, J. (2020). Aptasensors as promising new tools in bisphenol A detection - An invisible pollution in food and environment. Microchemical Journal, 155, 104722. https://doi.org/10.1016/j.microc.2020.104722
  20. Rao, H., Wang, X., Du, X., & Xue, Z. (2013). Mini Review: Electroanalytical Sensors of Mesoporous Silica Materials. Analytical Letters, 46(18), 2789–2812. https://doi.org/10.1080/00032719.2013.816962
  21. Rashid, J. I. A., Yusof, N. A., Abdullah, J., Hashim, U., & Hajian, R. (2015). A Novel Disposable Biosensor Based on SiNWs/AuNPs Modified-Screen Printed Electrode for Dengue Virus DNA Oligomer Detection. IEEE Sensors Journal, 15(8), 4420–4421. https://doi.org/10.1109/JSEN.2015.2417911
  22. Shuai, H. L., Wu, X., Huang, K. J., & Zhai, Z. B. (2017). Ultrasensitive electrochemical biosensing platform based on spherical silicon dioxide/molybdenum selenide nanohybrids and triggered Hybridization Chain Reaction. Biosensors and Bioelectronics, 94(March), 616–625. https://doi.org/10.1016/j.bios.2017.03.058
  23. Sun, J., Gan, T., Zhai, R., Fu, W., & Zhang, M. (2018). Sensitive and selective electrochemical sensor of diuron against indole-3-acetic acid based on core-shell structured SiO2@Au particles. Ionics, 24(8), 2465–2472. https://doi.org/10.1007/s11581-017-2367-4
  24. Tang, J., Tang, D., Niessner, R., Knopp, D., & Chen, G. (2012). Hierarchical dendritic gold microstructure-based aptasensor for ultrasensitive electrochemical detection of thrombin using functionalized mesoporous silica nanospheres as signal tags. Analytica Chimica Acta, 720, 1–8. https://doi.org/10.1016/j.aca.2011.12.070
  25. Wang, J., Guo, J., Zhang, J., Zhang, W., & Zhang, Y. (2017). RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes. Biosensors and Bioelectronics, 95, 100–105. https://doi.org/10.1016/j.bios.2017.04.014
  26. Yeh, Y. C., Creran, B., & Rotello, V. M. (2012). Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale, 4(6), 1871–1880. https://doi.org/10.1039/c1nr11188d
  27. You, M., Yang, S., Tang, W., Zhang, F., & He, P. (2018). Molecularly imprinted polymers-based electrochemical DNA biosensor for the determination of BRCA-1 amplified by SiO2@Ag. Biosensors and Bioelectronics, 112(December 2017), 72–78. https://doi.org/10.1016/j.bios.2018.04.038
  28. Yu, C., Fan, J., Tian, B., & Zhao, D. (2004). Morphology Development of Mesoporous Materials: A Colloidal Phase Separation Mechanism. Chemistry of Materials, 16(5), 889–898. https://doi.org/10.1021/cm035011g
  29. Zhang, H. X., Cao, A. M., Hu, J. S., Wan, L. J., & Lee, S. T. (2006). Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode. Analytical Chemistry, 78(6), 1967–1971. https://doi.org/10.1021/ac051826s
  30. Zhang, Z., Zhou, J., & Du, X. (2019). Electrochemical biosensors for detection of foodborne pathogens. Micromachines, 10(4). https://doi.org/10.3390/mi10040222
  31. Zhou, J., & Rossi, J. J. (2014). Cell-type-specific, aptamer-functionalized agents for targeted disease therapy. Molecular Therapy - Nucleic Acids, 3(March), 1–17. https://doi.org/10.1038/mtna.2014.21