Main Article Content

Abstract

Ilalang (Imperata cylindrica L) merupakan tumbuhan liar yang jarang dimanfaatkan. Daun ilalang mengandung senyawa bioaktif seperti alkaloid dan flavonoid. Senyawa flavonoid dapat digunakan sebagai zat reduktor alami dalam sintesis nanopartikel perak (AgNPs). Tujuan pada penelitian ini adalah sintesis nanopartikel perak menggunakan bioreduktor alami dari ekstrak daun ilalang. Sintesis nanopartikel perak menggunakan metode green synthesis (reduktor alam). Terbentuknya koloid nanopartikel perak terlihat secara visual ditandai dengan perubahan warna koloid menjadi coklat setelah penambahan ekstrak daun ilalang. Hasil UV-Vis menunjukkan nanopartikel perak memiliki puncak serapan pada panjang gelombang 420 nm dengan nilai absorbansi 1,9. FTIR memperlihatkan spektrum pengurangan puncak serapan nanopartikel perak pada bilangan gelombang 3356 cm-1. Hasil XRD dan PSA menunjukkan nanopartikel perak memiliki rata-rata ukuran kristal 19 nm dan distribusi ukuran partikel sebesar 1160 nm. Nanopartikel perak memiliki bentuk bulat dengan ukuran partikel 20 nm yang terlihat pada morfologi hasil TEM

Keywords

Green synthesis Imperata cylindrica L Silver nanoparticles

Article Details

How to Cite
Zulaicha, A. S., Saputra, I. S., Sari, I. P., Ghifari, M. A., Yulizar, Y., Permana, Y. N., & Sudirman, S. (2021). Green Synthesis Nanopartikel Perak (AgNPs) Menggunakan Bioreduktor Alami Ekstrak Daun Ilalang (Imperata cylindrica L). RAFFLESIA JOURNAL OF NATURAL AND APPLIED SCIENCES, 1(1), 11–19. https://doi.org/10.33369/rjna.v1i1.15588

References

  1. Hu, C.; Lan, Y.; Qu, J.; Hu, X.; Wang, A. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. The Journal of Physical Chemistry B, 2006, 110 (9): 4066–4072.
  2. Anuj, S. A.; Ishnava, K.B. Plant mediated synthesis of silver nanoparticles by using dried stem powder of Tinospora cordifolia its antibacterial activity and comparison with antibiotics. International Journal of Pharma and Bio Sciences, 2013, 4 (4): P849–P863.
  3. Raveendran, P.; Fu, J.; Wallen, S.L. Completely “Green” Synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society, 2003, 125 (46): 13940–13941.
  4. Pooley, F, D. Bacteria accumulate silver during leaching of sulphide ore minerals. Nature, 1982, 296 (5858): 642–643.
  5. Rauwel, P.; Küünal, S.; Ferdov, S.; Rauwel, E. A Review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Advances in Materials Science and Engineering, 2015, Article ID: 682749, 1-9.
  6. Swamy, M.K.; Sudipta, K.M.; Jayanta, K.; Balasubramanya, S. The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Applied Nanoscience, 2014, pp: 1– 9.
  7. Waghmode, S.; Chavan, P.; Kalyankar, V.; Dagade, S. Synthesis of silver nanoparticles using Triticum aestivum and its effect on peroxide catalytic activity and toxicology. Journal of Chemistry, 2013, Article ID: 265864, 1-5.
  8. Cicek, S.; Gungor, A.A.; Adiguzel, A.; Nadaroglu, H. Biochemical evaluation and green synthesis of nano silver using peroxidase from Euphorbia (Euphorbia amygdaloides) and its antibacterial activity. Journal of Chemistry, 2015, Article ID: 486948, 1-7.
  9. Balasooriya, E.; Roshan, C.D.; Jayasinghe, U.A.; Jayawardena, R.; Weerakkodige, D.; Ruwanthika, R.M.D.; Silva, P.V.; Udagama. Honey Mediated Green Synthesis of Nanoparticles: New Era of Safe Nanotechnology. Journal of Nanomaterials, 2017. 2 (3): 1-5.
  10. Awad, A.; Manal, A.A.; Hendi, K.M.O.; Ortashi, A.B.; Alanazi, B.A.; ALZahrani, D.A.; Soliman. Greener Synthesis, Characterization, and Antimicrobiological Effects of Helba Silver Nanoparticle-PMMA Nanocomposite. International Journal of Polymer Science, 2019, 65 (32): 1-6.
  11. Fawcett, D.; Verduin, J.J.; Shah, M.; Sharma, S.B.; Poinern, G.E.J. A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. Journal of Nanoscience, 2019, Article ID: 8013850, 1-15.
  12. Encarnación, B.E.; González, C.E.E.; Anzaldo, X.G.V.; Cárdenas, M.E.C.; RamírezJ, R.M. Silver nanoparticles synthesized through green methods using escherichia coli top 10 (Ec-Ts) growth culture medium exhibit antimicrobial properties against nongrowing bacterial strains. Journal of Nanomaterials, 2017, Article ID: 4637325, 1-8.
  13. Hemmati, S.; Roberts, E.R. Scott, C.; Harris, M.T. Artificial sweeteners and sugar ingredients as reducing agent for green synthesis of silver nanoparticles. Journal of Nanomaterials, 2019, Article ID: 9641860, 1-16.
  14. Isaac, R.S.R.; Sakthivel, G.; Murthy, C.; Green synthesis of gold and silver nanoparticles using averrhoa bilimbi fruit extract. Journal of Nanotechnology, 2013, Article ID: 906592, 1-6.
  15. Vanaja, M.; Paulkumar, K.; Gnanajobitha,; Rajeshkumar, S.; Malarkodi, C.; Annadurai, G. Herbal plant synthesis of antibacterial silver nanoparticles by Solanum trilobatum and its characterization. International Journal of Metals, 2014, Article ID: 692461, 1-8.
  16. Skiba, M.I.; Vorobyova, V.I. Synthesis of silver nanoparticles using orange peel extract prepared by plasmochemical extraction method and degradation of methylene blue under solar irradiation. Advances in Materials Science and Engineering, 2019, Article ID: 8306015, 1-8.
  17. Iravani, S.; Zolfaghari, B. Green synthesis of silver nanoparticles using pinus eldarica bark extract. BioMed Research International, 2013, Article ID: 639725, 1-5.
  18. Navarro, M.C.S.; Torres, C.A.R.; Mart?´nez, N.N.; Sa´nchez, R.S.; Castaño´n, G.A.M.; Montero, I.D.; Ruiz, F. Cytotoxic and bactericidal effect of silver nanoparticles obtained by green synthesis method using Annona muricata aqueous extract and functionalized with 5-fluorouracil. Bioinorganic Chemistry and Applications, 2018, Article ID: 6506381, 1-8.
  19. González, C.E.E.; Cervantes, J.A.G.; Rodríguez, A.V.; Ramírez, J.M.R.; Bacterial exopolysaccharides as reducing and/or stabilizing agents during synthesis of metal nanoparticles with biomedical applications. International Journal of Polymer Science, 2018, Article ID: 7045852, 1-15.
  20. El-Sheikh, M.A. A novel photosynthesis of carboxymethyl starch- stabilized silver nanoparticles. Scientific World Journal, 2014, Article ID: 514563, 1-11.
  21. Rashid, M.; Sabir, S. Biosynthesis of self-dispersed silver colloidal particles using the aqueous extract of P. peruviana for sensing dl-alanine. ISRN Nanotechnology, 2014, Article ID: 670780, 1-7.
  22. Ndikau, M.; Noah, N.M.; Andala, D.M.; Masika, E. Green synthesis and characterization of silver nanoparticles using citrullus lanatus fruit rind extract. International Journal of Analytical Chemistry, 2017, Article ID: 8108504, 1-9.
  23. Sutiya, B. Wiwin, T.I.; Adi, R.; Sunardi. Kandungan kimia dan sifat serat alang- alang (Imperata cylindrica L) sebagai gambaran bahan baku pulp dan kertas. Bioscientiae, 2012, 9 (1): 8-19.
  24. Bindhu, M.R.; Umadevi, M. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 101, pp. 184–190.
  25. Deshmukh, A.R.; Gupta, A.; Kim, B.S. Ultrasound assisted green synthesis of silver and iron oxide nanoparticles using fenugreek seed extract and their enhanced antibacterial and antioxidant activities. BioMed Research International, 2019, Article ID: 1714358, 1-14.
  26. Qais, F.A.; Shafiq, A.; Khan, H.M.; Husain, F.M.; Khan, R.A.; Alenazi, B.; Alsalme, A.; Ahmad, I. Antibacterial effect of silver nanoparticles synthesized using murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorganic Chemistry and Applications, 2019, Article ID: 4649506, 1-11.
  27. Petrucci, O.D.; Hilton, H.R.; Farrer, J.K.; Wat, R.K. A ferritin photochemical synthesis of monodispersed silver nanoparticles that possess antimicrobial properties. Journal of Nanomaterials, 2019, Article ID: 9535708, 1-8.
  28. Saputra, I.S.; Yulizar, Y.; Sudirman. Effect of concentration of Imperata cylindrica L leaf extract on synthesis process of gold nanoparticles. Jurnal Sains Materi Indonesia, 2018, 19 (2): 72-76.