Main Article Content

Abstract

Bengkulu municipality as a constituent element of the Air Bengkulu watershed with 51,500 of hectares area bypassed by the stream of Air Bengkulu River which empties into the Teluk Segara District, municipal of Bengkulu. Air Bengkulu River suffered flood at least twice a year of frequency as result of the increase in water discharge (Q) in the rainy season. The purpose of this research is to calculate the amount of peak river discharge of Air Bengkulu and mapping
the distribution of inundation water that may occur in the city of Bengkulu. Analysis of the mean daily maximum rainfall area was conducted by Thiessen Polygon using 15 last years of rainfall datas. Calculation of peak discharge using rational methods for different return period plans Analysis of Rainfall of flood modeling simulation is done by using HEC-RAS 4.1.0 and flood inundation mapping is done by using Hec-GeoRAS 4.3.1 flood modeling. The result of rainfall plan calculations was qualified by Gumbel type 1 method. The results of the Air Bengkulu river peak discharge quantify for return period 5, 10, 25, 50 and 100 years respectively 339.66 m3/sec; 470.38m3/sec; 520.59m3/sec; 557.83m3/sec; 594.79m3/sec; 631.62m3/sec. Results of generated mapping showed the areas affected by flood inundation in Bengkulu City namely Pasar Bengkulu village, Kampung Klawi, Rawa Makmur, Suka Merindu, Tanjung Agung,Tanjung Jaya, and Semarang. The depth value of inundation mapping for every affected village of floodwaters are vary, but in the range of 0 - 110 cm.

Article Details

How to Cite
Gunawan, G. (2019). ANALISIS DATA HIDROLOGI SUNGAI AIR BENGKULU MENGGUNAKAN METODE STATISTIK. Inersia: Jurnal Teknik Sipil, 9(1), 47–58. https://doi.org/10.33369/ijts.9.1.47-58

References

  1. Andriansyah, O., & Mustikasari, R. (2011). Gambaran Umum Permasalahan Pengelolaan Air DAS Air Bengkulu. Bogor: Yayasan Telapak.
  2. Arnita, Sari, A. I., Sudarsono, b., Sasmito, b., & Harianto. (2013). Penentuan Area Luapan Kali Babon Akibat Kenaikan Debit Air Berbasis SIG. Jurnal Geodesi Undip Volume 2 Nomor 4, 57-71.
  3. Aronoff, S. (1989). Geographic Informatio Systems : A management
  4. Perspective. Ottawa: WDL Publications.
  5. Asdak, C. (2010). Hidrologi dan Pengelolaan Daerah Aliran Sungai. Yogyakarta: Gajah MAda University Press.
  6. Barus B, W. U. (2000). Sistem Informasi Geografi – Sarana Manajenem
  7. Sumber Daya. Bogor: Lab INDRAJA dan Kartografi FP IPB.
  8. BNPB. (2015). Info Bencana. Jakarta: Pusdatinmas Badan Nasional Penanggulangan Bencana.
  9. DAI. (2007). Panduan Pemetaan Partisipatif. Malang: Environmental Services Program.
  10. ESRI. (1991). Point Interpolation Prosess Wizard. ESRI, Inc.: Arc/view user guide.
  11. ESRI. (2015, October 11). HEC-GeoRAS and ArcGIS. Diambil kembali dari
  12. http://www.esri.com/library/fliers/pdfs/hec-georas-arcgis.pdf
  13. Handayani, Y. L., Hendri, A., & Aditya, A. (2013). Analisa Hujan Rancangan Partial Series dengan Berbagai Panjang Data dan Kala Ulang
  14. Hujan. Pekanbaru: Jurusan Teknik Sipil Fakultas Teknik UNRI.
  15. Hasby, F. (2013). Fluids Flow Classification.
  16. Hasmar, H. (2012). Drainase Terapan. Dalam H. Hasmar, Drainase Terapan (hal. 9-10). Yogyakarta: UII Press.
  17. IDEP. (2007). Banjir, Peranan Masyarakat saat terjadi banjir. BALI: Indonesian Development of Education and Permaculture.
  18. Istiarto. (2014). Modul Pelatihan HECRAS: SIMPLE GEOMETRY RIVER. Fakultas Teknik Jurusan Teknik Sipil dan Lingkungan Universitas Gajah Mada: (Tidak Diterbitkan).
  19. Kamiana, I.M. (2011). Teknik Perhitungan Debit Rencana Bangunan Air.
  20. Yogyakarta: Graha Ilmu.
  21. Merwade, V. (2012). Tutorial on using HEC-GeoRAS with ArcGIS 10 and HECRAS Modeling. Indiana, USA: School of Civil Engineering, Purdue
  22. University.
  23. Pemerintah Kota Bengkulu. (2015, September 17). Bidang geografis. Diambil kembali dari Website Resmi Kota Bengkulu: http://www.bengkulukota.go.id/sela yang-pandang_geografi_pg250.html
  24. Priyana, d. (2013). Model Simulasi Luapan Banjir Sungai Bengawan Solo
  25. untuk Optimalisasi Kegiatan Tanggap Darurat Bencana Banjir. Surakarta: UMS.
  26. Rahayu, S. (2009). Monitoring Air Di Daerah Aliran Sungai . Bogor: World Agroforesty Center ICRAF Asia Tenggara.
  27. Santosa, B. (1988). Hidrolika. Jakarta: Erlangga.
  28. Smith , K., & Ward, R. (1998). Floods: Physical process and human
  29. impact, John wiley and Sons. Chichester, USA.
  30. Soewarno. (1995). Hidrologi Aplikasi Metode Statistik Untuk Analisa Data Jilid 1. Bandung: Nova.
  31. Sosrodarsono, S., & Takeda, K. (1976). Hidrologi Untuk pengairan.
  32. Jakarta: PT. Pradnya Paramita.
  33. Syahrir, B. K., & Kardhana, H. (2009). Banjir dan Upaya Penanggulangannya. Program for Hydro - Meteorogical riskmitigation secondary cities in Asia. Bandung: Indonesia.
  34. Triatmodjo, B. (1993). Hidraulika 1. Yogyakarta: Beta Offset.
  35. US Army Corps Of Engineers. (2015,October 11). Hec-geoRAS. Retrieved from Hidrologic Engineering Center: http://www.hec.usace.army.mil/soft
  36. ware/hec-georas/
  37. Utomo, W. (2004). Pemetaan Kawasan Berpotensi Banjir di DAS Kaligarang Semarang dengan menggunakan SIG (Skripsi). Bogor: Institur Pertanian Bogor.
  38. Wijayanti, P. (2013). Analisis keruntuhan bendungan Pacal. e-Jurnal MATRIKS TEKNIK SIPIL Vol. 1 No. 4 Universitas Sebelas Maret, 488495.
  39. Yudha, S. G. (2014). Analisis Kapasitas Sungai dalam Mengendalikan Banjir Dengan Integrasi Antara Metode Rasional Dengan Program WIN TR. Bengkulu: Universitas Bengkulu.