Main Article Content

Abstract

ABSTRACT
The green revolution in the field of palm oil farming not only contributes to processed products but also produces large-capacity waste originating from its processing starting from the sterilization process, water from the clarification process, hydro cyclone (clay bath) water, and factory washing water. Palm oil mill effluent (LCPKS) contains dissolved and suspended solids in the form of colloids and oil residues with high BOD and COD. If this liquid waste is discharged directly into the water, it can pollute the environment. Some will settle, decompose slowly, consume dissolved dcxdcoxygen, cause turbidity, emit a sharp odor and can damage the aquatic ecosystem. To improve the parameters in the LCPKS so that it is feasible to flow to water bodies or the environment, an LCPKS treatment experiment test is performed by applying corona discharge with variations in voltage and length of time, then comparing the effect on parameters such as BOD, COD, pH and TDS on LCPKS before treatment and after treatment. From the treatment process using a corona discharge application with variations in voltage and time able to reduce BOD levels up to 35%, COD 36%, increase in TDS reached 71.56% and decreased pH by 4.11%.

Key words: Palm oil mill effluent (LCPKS), Corona discharge application (Corona Discharge Treatment), COD, BOD, TDS, pH

Article Details

How to Cite
Pamungkas, A., Anggraini, I. N., Rosa, M. K. A., & Herawati, A. (2020). Aplikasi Lucutan Plasma Corona Dalam Pengolahan Limbah Cair Kelapa Sawit. JURNAL AMPLIFIER : JURNAL ILMIAH BIDANG TEKNIK ELEKTRO DAN KOMPUTER, 10(2), 9–14. https://doi.org/10.33369/jamplifier.v10i2.15313

References

  1. REFERENSI
  2. Kementerian Lingkungan Hidup Republik Indonesia, “Panduan Penataan Pengelolaan Lingkungan Industri Minyak Sawit”. Indonesia: KLH, 2011.
  3. Maryadi,“Analisis Ekonomi Pemanfaatan Limbah Cair di Kebun Sawit Sei” dalam Jurnal Teknik Lingkungan. Manding Riau: P3TL BPPT, 2006.
  4. Raharjo, P.N, “Studi Banding Pengolahan Minyak Kelapa Sawit” dalam Jurnal Teknik Lingkungan. Manding Riau: P3TL BPPT, 2009.
  5. Zuhra, “Pengolahan Limbah Cair Pabrik Minyak Kelapa Sawit Dengan Metoda Pengapungan (Flotasi)” dalam Jurnal Ilmu Pengetahuan dan Teknologi Terapan “REINTEK”. Sumatera Utara: Umsu, 2008.
  6. Departemen Pertanian, Pedoman Pengelolaan Limbah Industri Kelapa Sawit. Jakarta: Ditjen PPHP, 2006.
  7. Hariri, “Rancang Bangun Reaktor Fluidisasi Plasma Non-Termal : Uji Kinerja Gasifikasi Batubara Dengan Udara dan Oksigen”. Fakultas Teknik, Universitas Indonesia, Jakarta, 2011.
  8. Putut, “Karakterisasi Reaktor Plasma CVD untuk Deposisi Diamond-Like Carbon Coating”. Fakultas Teknik, Universitas Negeri Semarang, Semarang, 2008.
  9. Hazmi, A. et al, “Penghilangan Mikroorganisme dalam Air Minum dengan Dielectric Barrier Discharge” dalam Jurnal Rekayasa Elktrika (Vol. 10, No 1, April 2012). Padang: Universitas Andalas, 2012.
  10. Nur, Muhammad, Fisika Plasma dan Aplikasinya. Semarang : Badan Penerbit Universitas Diponegoro Semarang, 2011.
  11. Dachlan, Harry Soekotjo, Moch. Dhofir dan Vico Fernanda, “Pengaruh Sudut Keruncingan dan Diameter Finial Franklin Terhadap Distribusi Medan Listrik dan Tingkat Tegangan Tembus” dalam Jurnal EECCIS (Vol. II, No. 1, Juni 2008). Malang: Universitas Brawijaya, 2008.
  12. Hart, Daniel W, Power Electronics. New York : McGraw-Hill, 2011.
  13. Hanafiyah, A. M, “Proposal Research Lomba Riset Sawit: Pengolahan Limbah Cair Pabrik Kelapa Sawit Berbasis Corona Discharge Treatment”. Fakultas Teknik, Universitas Bengkulu, Bengkulu, 2016.
  14. Sulaiman, “Pengaruh Aplikasi Teknologi Plasma Lucut Korona pada Pemurnian Minyak Transformator Bekas Terhadap Peningkatan Tegangan Tembus”. Fakultas Teknik, Universitas Bengkulu, Bengkulu, 2015.