Main Article Content

Abstract

The consumption of electrical power continues to increase every day, along with technological advances, the increase in the use of machines that depend on electricity and the growth of the human population. Prediction of electric power consumption is difficult due to various things such as weather conditions and dynamic behavior of residents. So to overcome this, deep learning methods are used, namely CNN (convolutional neural network), LSTM (long-short term memory), BDLSTM (bi-directional long short term memory), CNN-LSTM and CNN-M-BDLSTM with three stages. The first stage is fixing the missing value. The second stage performs data processing and building model from deep learning methods. The third stage evaluates the prediction results with error metrics. From the results of the analysis, the CNN method produces the smallest loss and training time of 0.0010 9/step ms, the LSTM and CNN-LSTM methods produce the largest loss of 0.0019 while the longest training time is 139/step ms in the BDLSTM method. Method The largest MSE, MAE, and MAPE values are 0.150, 0.258 and 0.176 respectively the results of the CNN method. The smallest MSE and MAE values are 0.082 and 0.174 the results of the BDLSTM method. While the smallest MAPE value obtained by the CNN-M-BDLSTM method is 0.148. This proves that the ability to predict short-term electric power consumption using the deep learning method has a good ability in terms of the error metric results.

Keywords

Deep Learning Error Metrics Power Consumption

Article Details

How to Cite
Daratha, N., Wardana, P., & Amri Rosa, M. K. (2024). Perbandingan Metode-Metode Deep Learning Dalam Prediksi Konsumsi Daya Listrik Rumah Jangka Pendek. JURNAL AMPLIFIER : JURNAL ILMIAH BIDANG TEKNIK ELEKTRO DAN KOMPUTER, 14(1), 61–69. https://doi.org/10.33369/jamplifier.v14i1.34367

References

  1. M. Josep et al, 2017. “Networked and Distributed Control Method with Optimal Power Dispatch for Islanded Microgrids” dalam IEEE Transactions On Industrial Electronics.
  2. A. S. Ahmad et al, 2014. “A Review On Applications Of ANN And SVM For Building Electrical Energy Consumption Forecasting” dalam Renewable and Sustainable Energy Reviews (vol. 33, 2014, hal. 102–109).
  3. T. Kim dan S. Cho, 2019. “Predicting Residential Energy Consumption Using CNN-LSTM Neural Networks” dalam Energy (vol. 182, hal. 72–81, 2019).
  4. K. Li, X. Xie, W. Xue, et al, 2018. “A Hybrid Teaching-Learning Artificial Neural Network For Building Electrical Energy Consumption Prediction Energy & Buildings A Hybrid Teaching-Learning Artificial Neural Network For Building Electrical Energy Consumption Prediction” dalam Energy Buildings (vol. 174, hal. 323–334, 2018).
  5. Syafruddin, M, dkk, 2014. “Metode Regresi Linier untuk Prediksi Kebutuhan Energi Listrik Jangka Panjang (Studi Kasus Provinsi Lampung)”. Lampung : Universitas Lampung.
  6. Adha, B. N, 2018. “Analisis Prakiraan Kebutuhan Energi Listrik Pada PT. PLN (Persero) WS2JB Area Palembang Dengan Menggunakan Metode Explanatory”. Fakultas Teknik, Universitas Negeri Jakarta, Jakarta.
  7. Kurniawati, Desi, 2019. “Prediksi Energi Listrik Dengan Metode Jaringan Syaraf Tiruan Backpropagation Menggunakan Matlab Untuk Kota Semarang Tahun 2019 – 2024”. Fakultas Teknik, Universitas Negeri Semarang, Semarang.
  8. Bandri, Sepannur, 2020. “Prediksi Perkembangan Kebutuhan Energi Listrik di Unit PLN Kayu Aro”. dalam LPPM UMSB (vol. XIII, no. 6, hal. 187–205, 2020).
  9. Ekananta,Y, dkk, 2018. “Penerapan Metode Average-Based Fuzzy Time Series Untuk Prediksi Konsumsi Energi Listrik Indonesia” dalam Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (vol. 2, no. 3, hal. 1283–1288, 2018).
  10. Suyanto dkk, 2019. “Deep Learning Modernisasi Machine Learning Untuk Big Data,”.
  11. R. S. Panigas, 2018. “Pembangunan Model Pembelajaran Mesin untuk Identifikasi Struktur Kalimat Bahasa Indonesia”.
  12. Jin, Xuebo dkk, 2020. “Prediction for Time Series with CNN and LSTM”.
  13. Arfian, 2018. “Implementasi Convolutional Neural Network Terhadap Transportasi Tradisional Menggunakan Keras”. Fakultas Matematika dan Ilmu Pengetahuaan Alam, Universitas Islam Indonesia, Yoygakarta.
  14. Ullah, F. U. M. I. N, Ullah, Amin, et al, 2020. “Short-Term Prediction of Residential Power Energy Consumption via CNN and Multi-Layer Bi-Directional LSTM Networks” dalam IEEE Access (vol. 8, hal. 123369–123380, 2020).