Main Article Content

Abstract

Spinach leaf extract has been used as a photosensitizer in titanium dioxide (TiO₂) nanoparticles for the fabrication of dye-sensitized solar cells (DSSCs). The TiO₂ nanoparticles were synthesized via the co-precipitation method by mixing TiCl₃ with distilled water and NH₄OH. The mixture was stirred until it turned white, indicating precipitate formation. The absorbance properties of both the TiO₂ nanoparticle powder and the natural dye were analyzed using UV-Vis spectrophotometry. DSSCs were fabricated by coating TiO₂ onto indium tin oxide (ITO)-coated glass substrates using the doctor blade method, followed by immersion in the dye solution. Three DSSC devices were prepared with varying dye soaking durations: 2 hours, 4 hours, and 6 hours. The current–voltage (I–V) characteristics of each device were measured and plotted to determine their respective power conversion efficiencies. The obtained efficiencies were 0.0444% for the 2-hour soaking time, 0.0570% for 4 hours, and 0.0589% for 6 hours.

Keywords

natural dye DSSC co-precipitation method solar cell efficiency

Article Details

How to Cite
Gunawan, B. (2025). Fabrikasi Sel Surya Berbasis Bahan Pemeka Organik Menggunakan Material TiO2 dan Pewarna Dari Ekstrak Bayam. Amplitudo : Jurnal Ilmu Dan Pembelajaran Fisika, 5(1), 15–21. https://doi.org/10.33369/ajipf.5.1.15-21

References

  1. (1). International Energy Agency. World Energy Outlook 2023. OECD; 2023. https://doi.org/10.1787/827374a6-en.
  2. (2). Wu T-C, Huang W-M, Meen T-H, Tsai J-K. Performance Improvement of Dye-Sensitized Solar Cells with Pressed TiO2 Nanoparticles Layer. Coatings 2023;13:907. https://doi.org/10.3390/coatings13050907.
  3. (3). Alor KP, Ezekoye BA, Ugwuoke PE, Offiah SU, Ezema FI, Akor S, et al. A Review of Advances on Natural Dye Sensitized Solar Cells (NDSSCs). JERR 2023;25:153–66. https://doi.org/10.9734/jerr/2023/v25i101008.
  4. (4). Sasongko SB, Novasari D, Ramadhan DH, Fadlilah MN, Pratiwi WZ. Study on Making a Prototype Dye Sensitized Solar Cell (DSSC) as an Alternative Electric Energy Source. IOP Conf Ser: Mater Sci Eng 2021;1053:012098. https://doi.org/10.1088/1757-899X/1053/1/012098.
  5. (5). Gong J, Liang J, Sumathy K. Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews 2012;16:5848–60. https://doi.org/10.1016/j.rser.2012.04.044.
  6. (6). Kokkonen M, Talebi P, Zhou J, Asgari S, Soomro SA, Elsehrawy F, et al. Advanced research trends in dye-sensitized solar cells. J Mater Chem A 2021;9:10527–45. https://doi.org/10.1039/D1TA00690H.
  7. (7). Kato N, Higuchi K, Tanaka H, Nakajima J, Sano T, Toyoda T. Improvement in long-term stability of dye-sensitized solar cell for outdoor use. Solar Energy Materials and Solar Cells 2011;95:301–5. https://doi.org/10.1016/j.solmat.2010.04.019.
  8. (8). Lee KS, Lee Y, Lee JY, Ahn J, Park JH. Flexible and Platinum‐Free Dye‐Sensitized Solar Cells with Conducting‐Polymer‐Coated Graphene Counter Electrodes. ChemSusChem 2012;5:379–82. https://doi.org/10.1002/cssc.201100430.
  9. (9). Schoden F, Dotter M, Knefelkamp D, Blachowicz T, Schwenzfeier Hellkamp E. Review of State of the Art Recycling Methods in the Context of Dye Sensitized Solar Cells. Energies 2021;14:3741. https://doi.org/10.3390/en14133741.
  10. (10). Francis OI, Ikenna A. Review of Dye-Sensitized Solar Cell (DSSCs) Development. NS 2021;13:496–509. https://doi.org/10.4236/ns.2021.1312043.
  11. (11). Adedokun O, Titilope K, Awodugba AO. Review on Natural Dye-Sensitized Solar Cells (DSSCs). IJET 2016;2:34. https://doi.org/10.19072/ijet.96456.
  12. (12). Seithtanabutara V, Chumwangwapee N, Suksri A, Wongwuttanasatian T. Potential investigation of combined natural dye pigments extracted from ivy gourd leaves, black glutinous rice and turmeric for dye-sensitised solar cell. Heliyon 2023;9:e21533. https://doi.org/10.1016/j.heliyon.2023.e21533.
  13. (13). Musyaro’ah, Huda I, Indayani W, Gunawan B, Yudhoyono G, Endarko. Fabrication and characterization dye sensitized solar cell (DSSC) based on TiO2/SnO2 composite, Solo, Indonesia: 2017, p. 030062. https://doi.org/10.1063/1.4968315.
  14. (14). Hatib R, Anwar K, Soso AY. PENGARUH VARIASI KOSENTRASI PADA EKSTRAK DAUN BAYAM MERAH SEBAGAI DYE TERHADAP KINERJA DYE SENSITIZED SOLAR CELL (DSSC). JTAM ROTARY 2024;6:61. https://doi.org/10.20527/jtam_rotary.v6i1.11112.
  15. (15). Gunawan B, Musyaro’ah, Huda I, Indayani W, S. SR, Endarko. The influence of various concentrations of N-doped TiO2 as photoanode to increase the efficiency of dye-sensitized solar cell, Solo, Indonesia: 2017, p. 030128. https://doi.org/10.1063/1.4968381.
  16. (16). Zhang J, Zhou P, Liu J, Yu J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys 2014;16:20382–6. https://doi.org/10.1039/C4CP02201G.
  17. (17). Alias SH, Abdul Razak FI, Chandren S, Loon Leaw W, Sahnoun R, Nur H. Band Gap Energy of Periodic Anatase TiO2 System Evaluated with the B2PLYP Double Hybrid Functional. Mal J Fund Appl Sci 2024;20:179–89. https://doi.org/10.11113/mjfas.v20n1.3223.
  18. (18). Ngagaraj G, Dhayal Raj A, Albert Irudayaraj A, Josephine R.L. Tuning the optical band Gap of pure TiO2 via photon induced method. Optik 2019;179:889–94. https://doi.org/10.1016/j.ijleo.2018.11.009.