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Article Info  Abstract  
Article History:  Regression analysis is the study of the relationship between dependent variable and one or 

more independent variables. One of the important assumption that must be fulfilled to get the 

regression coefficient estimator Best Linear Unbiased Estimator (BLUE) is homoscedasticity. 

If the homoscedasticity assumption is violated then it is called heteroscedasticity. The 

consequences of heteroscedasticity are the estimator remain linear and unbiased, but it can 

cause estimator haven‘t a minimum variance so the estimator is no longer BLUE. The 

purpose of this study is to analyze and resolve the violation of heteroscedasticity assumption 

with Weighted Least Square(WLS) and Quantile Regression. Based on the results of the 

comparison between WLS and Quantile Regression obtained the most precise method used to 

overcome heteroscedasticity in this research is the WLS method because it produces that is 

greater (98%).  
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1. INTRODUCTION 

Regression analysis is defined as a study of the functional relationship of one or more independent variables to 

one or more dependent variables. Regression is one of the most widely used statistical analysis techniques. The 

principles of regression analysis are then derived, various statistical analysis techniques that can be used in various 

fields ranging from science, economics and business, industry and so on. Regression itself was first introduced by 

Francis Galton in 1877, which then experienced many developments from year to year[1]. 

The Ordinary Least Square(OLS) method is one way to estimate the regression parameters in linear regression. 

To obtain a Best Linear Unbiased Estimator(BLUE), the following assumptions, such as Normal distribution, no 

multicollinearity, no autocorrelation, and homoscedasticity are all requirements for data[2]. Violation of the 

assumption of homoscedasticity is called heteroscedasticity, which means the error is not constant. When it occurs, 

the OLS estimates are still unbiased but become inefficient. Meaning that the variance tends to enlarge so that it is 

no longer a variance minimum.  Estimates can even lead to incorrect conclusions; hence a solution for resolving the 

problem is required. The effect of heteroscedasticity must be lost if this assumption is violated[3].  

The next problem is if there is a possibility that the slope of the data lies not in the median but a particular 

quantile piece. Approach with the median is considered inaccurate because it only sees two groups of data divided 

by the median value. So that the Quantile Regression method was developed. Quantile Regression is a regression 

method with an approach to separate or divide data into specific quantiles where it is suspected that there is a 

difference in the estimated value. 

The Weighted Least Square (WLS) method is an alternative method that can overcome heteroscedasticity. The 

WLS method is the same as the OLS method by minimizing the number of residues, but the WLS method is 

weighted a relevant factor and then uses the OLS method on the weighted data. 

This study will compare the Quantile Regression method and the WLS method to overcome the problem of 

heteroscedasticity and see which method is better in dealing with heteroscedasticity. This study follows the 

following criteria: 

a. In this study used heteroscedasticity analysis that occurs in simple regression. 
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b. The WLS method uses b weighting (error variance proportional to 𝑋𝑖𝑗) because, after investigating the data 

using graphs, it turns out that the pattern shows a linear relationship. 

2. METHOD 

The methods used in this research comprise three methods, those are Linear Regression Analysis, 

Weighted Least Square, and Quantile Regression. 

a. Linear Regression Analysis 

Regression analysis is a technique for examining the relationship between two or more variables. This 

relationship can be written as an equation, which connects the dependent variable to one or more independent 

variables[4]. This analysis is used to determine if the relationship between the independent and dependent variables 

is positive or negative and to predict the value of the dependent variable if the value of the independent variable 

increases or decreases. Typically, interval or ratio scale data is used. 

In general, the simple regression equation is written as  

 𝐲𝑖𝑗𝑘 = 𝝁 + 𝜶𝑖 + 𝜷𝑗 + 𝜸𝑖𝑗 + 𝜺𝑖𝑗𝑘 = 𝝁𝑖𝑗 + 𝜺𝑖𝑗𝑘 (1) 

We require a BLUE (Best Linear Unbiased Estimator) parameter estimate method in linear regression analysis, and 

the most commonly used method is the Ordinary Least Squares(OLS) method. Some assumptions must be met 

when using Ordinary Least Squares(OLS). The data must have a Normal distribution,  no autocorrelation, and 

homoscedasticity. If all of these assumptions are met, OLS will be able to meet the BLUE estimator. If one or more 

assumptions are not met, the estimation results obtained will not meet the BLUE qualities. One of the assumptions 

that must be met when performing estimation is homoscedasticity. The term homoscedasticity refers to the fact that 

the error variance is constant[5]. The error variance that is not constant is called heteroscedasticity. 

Heteroscedasticity is a type of violation of the homoscedasticity assumption. When heteroscedasticity occured in 

line with estimating the Ordinary Least Square method, the estimate results obtained no longer meet the nature of 

BLUE, and therefore the other alternative approaches must be used to estimate parameters to overcome the 

heteroscedasticity. 

1. Best 

A regression line is a way of understanding the pattern of relationship between two or more data series. The 

regression line is “Best” if it produces the smallest error. The error is difference between the observed value 

and the predicted value by regression line. Best accompanied with unbiased, the regression estimator is called 

efficient. 

2. Linear 

An estimator 𝛽 is called linear if it is a linear function of the sample. The mean of X is a linear estimator 

because it is a linear function of the values of X. The values of OLS is also a linear estimator [6] 

3. Unbiased 

An estimator is said to be unbiased if the expected value is equal to the parameter (𝐸(�̂�) = 𝛽 ). A Gaussian 

theorem which is the main concern in Econometrics is known as the classical assumption. Assumptions in the 

classical linear regression model has ideal properties known as the Gauss-Markov theorem. The OLS 

will produce a BLUE estimator. 

The normality test is used to verify that the variables used in regression models are random and must be Normal 

distributed. Because only the dependent variable has randomness, Normality testing on the dependent variable is 

sufficient. The random variable is distributed independently and identically, then with a few exceptions distribution 

of numbers tends to a Normal distribution if the number of such variables increases unlimited[3]. However, if the 

assumption of Normal is not met, it can conclude that the theory does not apply because the data is not Normal 

distributed. One way to handle the issue of Normality is to add sample observation or to eliminate some samples 

that have extreme data values and are suspected of causing the non-fulfilment of the data's Normality. Therefore, 

before a further theory is used and conclusions are drawn based on the theory in which the assumption of normality 
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is used, it needs to be investigated whether the assumption is fulfilled or not. Normality test is done by Shapiro 

Wilk test and a normal Q-Q plot graph [8] 

The Shapiro Wilk test is a method or formula for calculating the distribution of data made by Shapiro Wilk. The 

requirements in the Shapiro Wilk test are interval or ratio scale data.Significance is compared with Shapiro Wilk's 

table to see the position of the 𝑇3values compared with Shapiro Wilk's table value to see the position of the 

probability value (p). If the p-value is less than 5%, it is rejected 𝐻0. 

 

𝑇3 =
1

𝐷
[∑ 𝑎𝑖(𝑋(𝑛−𝑖+1) − 𝑋𝑖

𝑘

𝑖=1

]

2

 (2) 

where 

D             : determinant (𝐷 = ∑ (𝑋𝑖 − �̅�)𝑛
𝑖=1

2
 

𝑎𝑖             : the coefficient of Shapiro Wilk 

𝑋(𝑛−𝑖+1)   : the n-i+1-th  observation  

𝑋𝑖             : the i-th observation 

According to Gasperz and Vincent, heteroscedasticity can lead to predictions where the parameter is inefficient 

and so without a minimal variance. Parameter estimation is considered efficient because it has a minimum variance 

or because the assumption of homoscedasticity is met. Heteroscedasticity can be solved by transforming the 

variables, both independent and dependent variables, to fulfil the homoscedasticity assumption. 

If there is a heteroscedasticity condition, the impact is that it is difficult to measure the actual standard 

deviation, or in other words, it can yield a standard deviation that is too large or too small. As the error rate of the 

variance continues to increase, then the level of confidence will be narrower. Heteroscedastic detection is essential 

for determining whether or not the data is heteroscedastic. According to Manurung, there are two ways to 

determine the presence of heteroscedasticity, namely the informal method and the formal method. Informal 

methods are usually used by looking at the graph plot of the predictive value of an independent variable (ZPRED) 

with the residual (SRESID). The variable is declared not to have heteroscedasticity if there is no pattern and the 

point spread above and below zero on the Y-axis. The Park Test and Glejser are two formal methods for detecting 

the presence of heteroscedasticity. 

 

 
Figure 1. Plot of the square error and the variable 

In Figure 1, the plot being compared is between the squared error and the variable. Figure 1.a, it can be seen that 

the error is relatively constant, so it does not show a pattern on the variance means homoscedastic. Figures 1.b, 1.c, 

1.d, and 1.e shows their respective patterns, namely fluctuations, trends, and logarithms, so that is heteroscedastic. 

The Park test involves regressing the residual value against each dependent variable. The hypothesis is as 

follows 

 𝐻0: 𝐻𝑜𝑚𝑜𝑠𝑐𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 

 𝐻1: 𝐻𝑒𝑡𝑒𝑟𝑜𝑠𝑐𝑒𝑑𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 
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𝐻0 is accepted if  −𝑡𝑡𝑎𝑏𝑙𝑒 < 𝑡𝑣𝑎𝑙 < 𝑡𝑡𝑎𝑏𝑙𝑒. Hence homoscedasticity occurred. On the other hand, 𝐻0 is rejected if 

𝑡𝑣𝑎𝑙 < −𝑡𝑡𝑎𝑏𝑙𝑒  or 𝑡𝑣𝑎𝑙 > 𝑡𝑡𝑎𝑏𝑙𝑒. It means that the data reflect heteroscedasticity. 

 

b. Weighted Least Square 

The Weighted Least Square (WLS) is similar to the Ordinary Least Square (OLS) method in theory; the 

difference is that the WLS method adds an additional w, which represents weight. The regression model 𝑌 = 𝑋𝛽 +

𝜀 with 𝑣𝑎𝑟(𝜀) = 𝑊𝜎2. The matrix W is a diagonal matrix containing 𝑤𝑖. 
 

 

𝑊 = (

𝑤1

0
0

𝑤2

⋯
⋯    

0
0

   ⋮
   0

      ⋮
      0

 ⋱
  ⋯

⋮
𝑤𝑛

) (3) 

                                    

The weight is calculated through examining the pattern shown by the residual of the independent variable. 

These are some of the patterns: 

1. The Error variance is proportional to 𝑋𝑖𝑗
2, for 1 ≤ 𝑗 ≤ 𝑘 

 𝐸(𝜀2) = 𝜎2𝑋𝑖𝑗
2  (4) 

 

 
        Figure 2.  The error variance is proportional to 𝑋𝑖𝑗

2  

If the pattern shows a quadratic relationship as in Figure 2, it can be assumed that the error variance is 

proportional to 𝑋𝑖𝑗
2, so that the weights used in the WLS method is  

1

𝑋𝑖𝑗
2,

 

2. The Error Variance is proportional to  𝑋𝑖𝑗 

 𝐸(𝜀2) = 𝜎2 𝑋𝑖𝑗 (5) 

 
Figure 3. The error variance is proportional to 𝑋𝑖𝑗 
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If the pattern shows a linear relationship as in Figure 3, it can be assumed that the error variance is proportional 

to 𝑋𝑖𝑗, so that the weights used in the WLS method is  
1

√𝑋𝑖𝑗,
 

3. The Error Variance is proportional to [𝐸(𝑌𝑖)]2 

 𝐸(𝜀2) = 𝜎2[𝐸(𝑌𝑖)]2 (6) 

 

 
Figure 4. The Error Variance is proportional to [𝐸(𝑌𝑖)]2   

 

If the Error variance is proportional to [𝐸(𝑌𝑖)]2, then the WLS method is carried out by performing OLS 

regression by ignoring heteroscedasticity to get the 𝑌𝑖  value which will be used as a weight so that the 

regression equation becomes 

  𝛽0

�̂�𝑖

+ 𝛽1

𝑋𝑖1

�̂�𝑖

+ 𝛽2

𝑋𝑖2

�̂�𝑖

+ ⋯ + 𝛽𝑘

𝑋𝑖𝑘

�̂�𝑖

+
𝜀𝑖

�̂�𝑖

 (7) 

 

c. Quantile Regression 

Koenker and Basset first introduced quantile regression in 1978. This method is an extension of the conditional 

quantile regression model in which the conditional quantile distribution of the dependent variable is expressed as a 

function of the covariates. This approach can make it possible to estimate the quantile function of the conditional 

distribution of the dependent variable on each quantile value according to the desired quantile [9]. Quantile 

regression is highly recommended to analyze several data that is not symmetrical and has an inhomogeneous 

distribution. Interval estimation in quantile regression can be done using the direct approach, rank score, and 

resampling [7]. The general equation for linear quantile regression specifically for the conditional quantile 

𝑄𝑦𝑖(𝜏|𝑋1𝑖, 𝑋2𝑖, … , 𝑋𝑝𝑖) of the dependent variable Y is  𝑌𝑖 = 𝛽0(𝜏) + 𝛽1(𝜏)𝑋1𝑖 + ⋯ + 𝛽𝑝(𝜏)𝑋𝑝𝑖 + 𝜀𝑖(𝜏) 

The quantile regression model is presented in the form of a matrix, the above equation can be written as 

follows: 

 

[

𝑌1

𝑌2

⋮
𝑌𝑛

] = [

1 𝑋11 𝑋21 ⋯ 𝑋𝑝1

1 𝑋12 𝑋22 ⋯ 𝑋𝑝2

⋮
1

⋮
𝑋1𝑛

⋮
𝑋2𝑛

⋱ ⋮
⋯ 𝑋𝑝𝑛

] [

𝛽0(𝜏)
𝛽1(𝜏)

⋮
𝛽𝑝(𝜏)

] + [

𝜀1(𝜏)
𝜀2(𝜏)

⋮
𝜀𝑛(𝜏)

] (8) 

 

Furthermore, the equation can be written in the form of the following linear model: 

 𝑦 = 𝑋𝛽(𝜏) + 𝜀 (9) 

                                               

If the conditional function is from the 𝜏 –th quantile with a certain independent variable X, then the conditional 

function is defined as follows: 
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 𝑄𝑌𝑖
(𝜏|𝑋1𝑖, 𝑋21, … , 𝑋𝑝𝑖) = 𝑄𝑦(𝜏|𝑋) =  𝑋𝑇𝛽(𝜏),   𝑖 = 1,2, … , 𝑛 (10) 

 

3. RESULTS AND DISCUSSION 

The data is generated with a value of n, starting from n = 20 to n = 1000. The results of the R program for 

simple linear regression with n = 500 obtained the parameter estimation results with the least squares method as 

follows: 

Table 1. Parameter Estimation Results with Ordinary Least Squares Method 

Variable  Estimation The Standard Error 𝒕𝐡𝐢𝐭𝐮𝐧𝐠 𝝆 – Value sig 

 1.37867 0.02605 52.91 <2e-16 *** 

𝑥1 1.99254 0.01145 173.95 <2e-16 *** 

 

From Table 1 the regression model can be written as follows: 

𝑦 = 1.37867 + 1.99254𝑥1 

When the p–value ≤ 0.01, the parameter is considered to be extremely significant (***), significant (**) when 

0.01 <p-value ≤ 0.05, and not significant when p–value > 0.05. After being tested using the ordinary least squares 

approach, the model is assessed to see whether it fits the normality and heteroscedasticity assumptions. 

The normality assumption test is done by observing the residual plot of the ordinary least squares method 

estimation model. In Figure 5, the results of the normality assumption test of the ordinary least squares method with 

data generated in the R program show that the QQ plot demonstrates the points which do not follow the necessary 

pattern and move away from the regression line, so it can be said that the error model does not follow the normal 

distribution. 

 

Figure 5. Normality test using QQ-plot 

Furthermore, a normality test that is performed using the Shapiro Wilk test with the R program yields the 

following results: 𝑤 = 0,9051, 𝜌 − 𝑣𝑎𝑙𝑢𝑒 = 2,2𝑒 − 16. The model is then tested by looking at the graph to check 

if it fits the heteroscedasticity assumption. The following is a graph showing the expected y against residual: 
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Figure 6. Plot of the prediction of y against it’s residual  

To confirm the heteroscedasticity test, the Breusch Pagan test has been carried out and has obtained the value 

BP = 70.393, df = 1, p-value < 2.2e-16, so it can be concluded that the p-value ≤ 0.05 indicates heteroscedasticity 

model. After the model is proven to be not normal distribution and heteroscedastic, the data will be transformed by 

two method. 

The first method to transform the data to normal and homoscedasticity is the quantile regression method, with 

the R program, beginning with estimating each 𝜏-th quantile so that the estimated value for each regression 

coefficient in each quantile is obtained. 

Table 2. The Estimation Result of Intercept 𝛽0 in Each Quantile 

Parameter Quantile Coefficient Standard Error T-𝑺𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒄𝒔  𝝆 − 𝒗𝒂𝒍𝒖𝒆 

𝛽0 0.05 0.69474 0.11715 5.93037 0.00000 

 0.10 0.93718 0.05125 18.28803 0.00000 

 0.15 1.05345 0.03828 27.51871 0.00000 

 0.20 1.15559 0.03184 36.28961 0.00000 

 0.25 1.23586 0.02575 47.98620 0.00000 

 0.30 1.29143 0.02139 60.38882 0.00000 

 0.35 1.33242 0.01739 76.62393 0.00000 

 0.40 1.35717 0.01485 91.41322 0.00000 

 0.45 1.37923 0.01223 112.74430 0.00000 

 0.50 1.40314 0.01430 98.09206 0.00000 

 0.55 1.43007 0.01375 103.96713 0.00000 

 0.60 1.45375 0.01678 86.62688 0.00000 

 0.65 1.48823 0.01697 87.71310 0.00000 

 0.70 1.53400 0.01833 83.67014 0.00000 

 0.75 1.47535 0.01923 79.86576 0.00000 

 0.80 1.62836 0.02121 76.75720 0.00000 

 0.85 1.69302 0.02467 68.63814 0.00000 

 0.90 1.79698 0.04106 43.76947 0.00000 

 0.95 2.00935 0.06859 29.29458 0.00000 
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The estimation results of intercept 𝛽0  at quantile 0.50 yield the estimated intercept for 𝛽0  of 1.40314 with a p-

value of 0.00000, which is significant at the value of 𝛼 = 0,05. Furthermore, the table below presents the estimation 

results for 𝛽1. 

Table 3. The Estimation Result of Slope 𝛽1  

Parameter Quantile Coefficient Standard Error 𝑻 − 𝑺𝒕𝒂𝒕𝒊𝒔𝒕𝒊𝒄𝒔 𝝆 − 𝒗𝒂𝒍𝒖𝒆 

𝛽1  0.05 1.83699 0.11715 5.93037 0.00000 

 0.10 1.87424 0.02395 18.28803 0.00000 

 0.15 1.88735 0.01787 105.63945 0.00000 

 0.20 1.89729 0.01443 131.45272 0.00000 

 0.25 1.91018 0.01250 152.86895 0.00000 

 0.30 1.9338 0.00939 205.85008 0.00000 

 0.35 1.93964 0.01207 160.73754 0.00000 

 0.40 1.96144 0.01197 163.91028 0.00000 

 0.45 1.97864 0.01268 156.06094 0.00000 

 0.50 2.00330 0.01018 196.80112 0.00000 

 0.55 2.02006 0.01037 194.72209 0.00000 

 0.60 2.02687 0.00911 222.42890 0.00000 

 0.65 2.03897 0.00762 267.49301 0.00000 

 0.70 2.05016 0.00832 246.33270 0.00000 

 0.75 2.08765 0.00919 221.9865 0.00000 

 0.80 2.06176 0.00951 216.74088 0.00000 

 0.85 2.07563 0.01181 175.80879 0.00000 

 0.90 2.08951 0.01715 121.85148 0.00000 

 0.95 2.076531 0.01264 167.6254 0.00000 

Based on Table 3, the estimation results of slope 𝛽1 at quantile 0.50 of 2.00330 with a p-value of 0.00000, 

which is significant at the value of 𝛼 = 0,05. The results of the coefficient above yield quantile regression models, 

𝑦 = 1,40314 + 2,00330𝑥 

The Weighted Least Square (WLS) is one of the data transformation methods, using weights to change the data. 

The data transformed by the WLS method will be re-estimated using the Least Square Method. Determination of 

weight is done by looking at the error variance plot. After detection using the graphical method, it is believed that 

the error variance is proportional to 𝑋𝑖𝑗, as shown in the following Figure 7: 

 

Figure 7. The Error Variance is proportional to 𝑋𝑖𝑗 
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The estimation results using the WLS method in the R program lead the model: 𝑦 = 1.0086994 −

0,0242969𝑥. After obtaining a new model using the R program, both the quantile regression method and Weighted 

Least Square method, the normality test should be carried out using the QQ plot method and the Shapiro Wilk test, 

afterward the heteroscedasticity test is carried out with a plot between the predicted y value against the residual (y-

axis) and perform the Breusch Pagan test. 

The following are the results of the normality test for quatile regression and Weigted Least Square: 

 
Figure 8. Normality Test using QQ-plot for Quantile Regression 

In addition, the normality test is carried out with the Shapiro Wilk test, and its results are as follows: W = 

0.54959, 𝜌-value < 2,2e-16. The p-value of 2.2e-16 shows that the data is normally distributed since it is greater 

than 𝛼. 

 
Figure 9. Normality Test using QQ-plot for WLS 

In addition, the normality test is carried out with the Shapiro Wilk test and results in: W = 0.98762, p-value = 

0.0003022. The p-value of 0.0003022 shows that the data is normally distributed because it is greater than 𝛼. 

The next step is to determine whether or not the data is heteroscedastic. The predicted and residual y-value plot 

using the Quantile Regression and WLS methods are shown in the figures below. 
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Figure 10.  The Predicted Y against Residual using Quantile Regression 

 

Figure 11.  The Predicted Y against Residual using WLS 

The data fulfill the assumption of homoscedasticity, as shown in Figure 10 and Figure 11; thus, the two 

approaches, Quantile Regression and WLS, have been compared to the value of the heteroscedasticity test with the 

Breush Pagan test. 

The values for the heteroscedasticity test in the quantile regression model are BP = 1.9316, df = 1, p-value = 

0.1646, so it can be concluded that the p-value greater than 𝛼 = 0,05  indicates that the model is not heteroscedastic. 

Moreover the results of the heteroscedasticity test in the WLS model are BP = 15.265, df = 1, p-value = 9.341e-05. 

Hence it can be concluded that the p-value = 9.341e-05 is greater than 𝛼 = 0,05, which means that the data is not 

heteroscedastic. 

Based on the test results regarding the ability of quantile regression and WLS in overcoming heteroscedasticity 

in regression analysis, it can be said that these two methods can overcome the problem of heteroscedasticity in the 

data used in this research. 
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Table 4. The Determination Coefficient of Quantile Regression and WLS 

n 
𝑹𝟐 

WLS Reg. Quantil 

100 80.45% 54.34% 

200 83.23% 60.28% 

300 85.67% 63.43% 

400 90.01% 70.19% 

500 98.01% 71.13% 

600 98.21% 71.88% 

700 98.23% 72.97% 

800 98.40% 65.29% 

900 98.13% 67.89% 

1000 98.55% 72.63% 

The estimation result with quantile regression is the 𝑅2 value of 71%. After testing the normality assumption, it 

is known that the error follows the normal distribution, and the homoscedasticity assumption is met. While the 

estimation result with WLS shows the 𝑅2value of 98%, and after testing the normality assumption, it is known that 

the error follows the normal distribution and the assumption of homoscedasticity is met. 

4. CONCLUSION 

In this study, quantile regression and WLS have been proven to be able to overcome heteroscedasticity, but 

after several tests with different value of  n, it can be said that the WLS method is better than quantile regression in 

overcoming the heteroscedasticity problem, because WLS can overcome the problem of normality as well as the 

problem of heteroscedasticity and has a  higher determination coefficient, that is 98% (for n = 500). 
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