
Price Prediction Using ARIMA Model of Monthly Closing Price of Bitcoin  

Apriliyanus Rakhmadi Pratama1* 
1 IAIN Sultan Amai Gorontalo, Gorontalo, Indonesia 

* Corresponding Author: Apriliyanus.pratama@iaingorontalo.ac.id   

Article Info  Abstract  
Article History: 
Received: July 12, 2022 

Revised: October 29, 2022 

Accepted: October 29, 2022 

Available Online: October 31, 2022 

 

 The rising of bitcoin’s user as a digital currency and investments causing an instability and an 

uncertainty in price movement and increasing the risk of trading, therefore in this study we try 
to forecast the future value of bitcoin price using ARIMA Models. 2 candidate models are 

selected by the lowest value of AIC and using the performance indicators ME, RSME, MAE, 

MPE, and MAPE conclude ARIMA (1,1,0) are the best ARIMA model, then the next 5 months 

future price forecasted using the best model. While ARIMA (1,1,0) is the best model, the model 
failed to follow price movement as shown in the forecasted price. Key Words: 

ARIMA  

Bitcoin 

Forecasting  

Univariate 

 

1. INTRODUCTION 

Bitcoin is a phenomenal digital currency that shaking economic foundation since its nature are decentralized and 

powered by its users with no central authority or middleman. Bitcoin’s transactions are recorded and monitored by 

its users using cryptograph network technology or called blockchain. Created in 2008 and used for the first time in 

2009 as it launched as open software [1]. Nowadays, bitcoin has gathered many interests, not just people, 

communities, or companies but countries [2]. Like a double edge sword, bitcoin’s price rising and falling as its user 

increasing follows the market flow of supply and demand causing a instability and uncertainty. Despite its volatility, 

bitcoin is still in early phase and one promising digital currency in the future. Therefore, in this study, we try to apply 

time series analysis method to forecast the future price of bitcoin and trying to follow its price movement.  

2. METHOD 

2.1 Nonstationary 

Nonstationary is a condition where time series data had no zero mean, constant variance over time, and constant 

autocorrelation structure over time. Performing stationary test on time series data formally conducted by unit roots 

test’s Dickey-Fuller [3] with uses the null hypothesis H0: data had unit root / time series data nonstationary against 

alternative hypothesis H1: data had no unit root / time series data is stationary. Ideally, reject H0 as p-value less than 

significance level alpha = 0.05 and conclude time series data is stationary. 

Handling nonstationary data is carried out through differencing process (1 − 𝐵)𝑑 with 𝑑 as differencing order 

while transforming time series data helps to reduce non constant variances, most commonly transformation method 

is Box-Cox Transformation [4]. Box-Cox transformation depend on the parameter 𝜆 and are defined as  

𝑤𝑡 = {

log(𝑦𝑡) 𝑖𝑓𝜆 = 0

(𝑦𝑡
𝜆 − 1)

𝜆
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝑦𝑡 is original observations and 𝑤𝑡 is transformed observations. Detail estimation value of parameter 𝜆 shown 

in Table 1. 
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2.2 ARIMA Models 

Autoregressive Integrated Moving Average (ARIMA) is combination of Autoregressive (AR) model, Moving 

Average (MA) model, and Integrated (I) as order of differencing process [3]. ARIMA model is suitable to handle a 

nonstationary time series data that has gone through differencing process [5], generally denoted as ARIMA (p, d, q) 

while p, d, q represents order of AR, I, and MA respectively.  

ARIMA (p,d,q) model have general notation as follows:  

 𝜑(𝐵)𝑌𝑡 = 𝜙(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃0 + 𝜙𝜃(𝐵)𝑎𝑡 (1) 

where 𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2 −⋯− 𝜙𝑝𝐵

𝑝 is a stationary autoregressive operator, 𝜑(𝐵)𝑌𝑡 = 𝜙(𝐵)(1 − 𝐵)𝑑  is a 

nonstationary generalized autoregressive operator with 𝑑 unit roots, 𝜃(𝐵) is a invertible moving average operator, 

and 𝜃0~𝑁(0, 𝜎𝑡
2). 

2.3 Model Identification 

General approach model identification [6] Forecasting process of time series data as follows: 

1. Plot the data and identify any unusual observations. 

2. If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance. 

3. If the data are non-stationary, take first differences of the data until the data are stationary. 

4. Examine the ACF/PACF: Is an ARIMA (p, d, 0) or ARIMA(0, d, q) model appropriate? 

5. Try your chosen model(s) and use the AIC to search for a better model. 

6. Check the residuals from your chosen model by plotting the ACF of the residuals and doing a portmanteau 

test of the residuals. If they do not look like white noise, try a modified model. 

7. Once the residuals look like white noise, calculate forecasts. 

 

Identification process of ACF and PACF could follow general pattern criteria as shown in Table 2 

Table 1.  Estimations on Box-Cox Transformation 

Estimation  Transformation 

-1.0 
1

𝑌𝑡
 

-0.5 
1

√𝑌𝑡
 

0.0 ln 𝑌_𝑡 

0.5 √𝑌𝑡 

1.0 𝑌𝑡 

 

Table 2. General Pattern Criteria ACF and PACF 

Model Plot ACF Plot PACF 

AR(p) Dies down Cut off lag p 

MA(q) Cut off lag q Dies down 

ARMA(p,q) Dies down after lag (q-p) Dies down after lag (p-q) 

 

2.4 Parameter Estimation 

Maximum Likelihood Estimation method is used as a parameter estimation as the method used all the information 

in the time series data. Given set time series observations 𝑌1, 𝑌2, … , 𝑌𝑛, likelihood function 𝐿 is defined to be function 

of the 𝜙, 𝜃, 𝜇,and𝜎𝑡
2 given the observations. 

Without assumption 𝐸(𝑌𝑡) = 𝜇 = 0, equation 1 can written as: 
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𝜃0 = 𝜙(𝐵)(1 − 𝐵)𝑑𝑌𝑡 − 𝜙𝜃(𝐵)𝑎𝑡 (2) 

Then, likelihood function L can be written as: 

𝐿(𝜙, 𝜃, 𝜇, 𝜎𝑡
2|𝜽) =

1

(2𝜋𝜎𝑡
2)

𝑛
2

𝑒𝑥𝑝
−
∑𝜃0

2

2𝜎𝑡
2

 (3) 

Again, log likelihood function can be written as: 

ℓ(𝜙, 𝜃, 𝜇, 𝜎𝑡
2|𝜽) = log(𝐿(𝜙, 𝜃, 𝜇, 𝜎𝑡

2|𝜽)) = log(
1

(2𝜋𝜎𝑡
2)

𝑛
2

𝑒𝑥𝑝
−
∑𝜃0

2

2𝜎𝑡
2
)  

ℓ(𝜙, 𝜃, 𝜇, 𝜎𝑡
2|𝜽) = −𝑒𝑥𝑝

∑𝜃0
2

2𝜎𝑡
2
−
𝑛

2
log(2𝜋𝜎𝑡

2) (4) 

2.5 Diagnostic Checking 

2.5.1 Autocorrelation Test of The Residuals 

The residuals are ideally independently distributed and exhibit no serial correlation. Ljung-Box Test [3] is 

common method that used to test the residuals independency with null hypothesis H0: The Residuals are 

independently distributed against alternative hypothesis H1: The residuals are not independently distributed and 

exhibit seral correlation. Statistics test is expected to fail to reject H0 within significant level and conclude that the 

residuals are independently distributed. 

The test statistics for the Ljung-Box Test as follows: 

𝑄 =
𝑛(𝑛 + 2)∑ 𝑝𝑘

2ℎ
𝑘=1

𝑛 − 𝑘
 (5) 

where, 𝑛 is number of sample size, 𝑝𝑘 is sample autocorrelation at lag 𝑘 (𝑘 = 1,… , ℎ). 

2.5.2 Normality of The Residuals 

The residuals also need to be normally distributed. One of many methods are by creating a Histogram. A 

histogram counts the number of observations between some ranges. To not violate the normality assumption, the 

histogram should be centered around zero and should show a bell-shaped curve. A high frequency at the extremes of 

the histogram could indicate that the residuals are not normally distributed. 

2.6 Model Selection 

Given a collection of models, Akaike’s Information Criterion (AIC) estimates the quality of each model, relative 

to each of the other models. Thus, AIC provides a means for model selection. AIC estimates the relative amount of 

information lost by a given model, the less information a model loses, the higher the quality of that model. In 

estimating the amount of information lost by a model, AIC deals with the trade-off between the goodness of fit of 

the model and the simplicity of the model. 

General notation of AIC written as[7]: 

𝐴𝐼𝐶 = −2 log(𝐿) + 2(𝑝 + 𝑞 + 𝑘 + 1) (6) 

where 𝐿 is the likelihood of the data, and 𝑘 is the number of predictors in the model, 𝑘 = 1 if 𝑐 ≠ 0 and 𝑘 = 0 if 

𝑐 = 0. 
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2.7 Performance Indicators 

Measuring the performance of the models carried out by applying few methods. Such as, Mean Error (ME), Root 

Mean Squared Error (RSME), Mean Absolute Error (MAE), Mean Percentage Error (MPE), and Mean Absolute 

Percentage Error (MAPE). Ideally, the best accuracy shown as the value of closer to zero. The equations are as 

follows: 

𝑀𝐸 =
∑ 𝑥𝑡 − 𝑓𝑡
𝑛
𝑡=1

𝑛
 

(7) 

𝑅𝑆𝑀𝐸 = √∑
(𝑥𝑡 − 𝑓𝑡)

2

𝑛

𝑛

𝑡=1

 
(8) 

𝑀𝐴𝐸 =
∑ |𝑥𝑡 − 𝑓𝑡|
𝑛
𝑡=1

𝑛
 

(9) 

𝑀𝑃𝐸 =
∑

𝑥𝑡 − 𝑓𝑡
𝑥𝑡

𝑛
𝑡=1

𝑛
× 100% 

(10) 

𝑀𝐴𝑃𝐸 =
∑ |

𝑥𝑡 − 𝑓𝑡
𝑥𝑡

|𝑛
𝑡=1

𝑛
× 100% 

(11) 

 

where 𝑥𝑡  is observed value at time t and 𝑓𝑡  is forecasted value at time t, and n is number observations. 

3. RESULT AND DISCUSSION 

On this study, we used bitcoin price data on monthly basis and was obtained from the website 

https://coinmarketcap.com, start from 01 January 2014 until 31 May 2022. At the end of October 2021, the bitcoin 

price closed at a peak price of $61,318.96 while in the last 2 years, the lowest bitcoin price was recorded at the end 

of March 2020 at $6,438.64. 

 

Figure 1. Bitcoin Monthly Price Period January 2021 –  May  2022  

https://coinmarketcap.com/
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3.1. Data Preparation 

Figure 1 clearly indicates that the data have upward trend and non-constant variance depicting a non-stationary 

time series. To stabilize the variance, we performed box-cox transformation. The train-test split evaluation [8] 

methodology is applied to our data. Data Training is used to find the most suitable models, while data testing is used 

as a comparison to forecast value from the best model. Data Testing starts from January 2022 – 31 May 2022, and 

data Training starts from January – December 2021. 

 

Figure 2. Transformed Bitcoin Monthly Price 

3.2. Data Stationarity 

Figure 2 clearly shows transformed data had upward trend, meaning data has non-constant mean. Supported by 

the result of the Augmented Dickey-Fuller (ADF) test conducted on the Training data, which obtained p-value 

0.8684. Since p-value > alpha 0.05 indicates that we failed to reject null hypothesis, we could say that our training 

data is not stationary. Differencing process was applied one time to achieve constant mean time series, as shown in 

Figure 3. ADF re-test was carried out to obtained p-value = 0.02411. Since p-value lower than alpha 0.05, we could 

finally be safe to reject null hypothesis.  
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Figure 3. Plot Differenced Data Training  

 

Figure 4. Plot ACF & PACF on Differenced Data Training 

3.3. ARIMA model identification 

Figure 4 shows Both ACF and PACF plot did not show any pattern resemble geometric decay or sharp drop. 

Ljung-Box then applied to check whether our differenced data is white-noise as null hypothesis or not white noise as 

alternative hypothesis. The test results p-value = 0.008118 which is larger than alpha 0.05, that conclude our 

differenced data is not a white noise.  

To identify the model candidates, “auto.arima()” was used, with arguments: stepwise = False, approximation = 

False, seasonal = False, allowdrift = False, and AIC value is used to measure the best candidates. The result shown 

in Table 3. The white-noise test was carried out on model candidate’s residue using the "Box.test()" syntax. The 

result p-value were shown in Table 4 indicates that all model candidate’s residue were white-noise. Figure 5 display 

one of residual plot from model candidates ARIMA (1,1,4), the residual plot from the model shows that the variation 

of residuals stays much the same across the historical data, therefore the residual can be treated as constant, while 

ACF plot show there is no significant correlations in the residuals series. The histogram suggests that the residual 

may be normal with a little heavy on the right side. Consequently, forecast from the model candidates will be quite 

good. 

Table 3. Model Candidates with The Lowest AIC Value 

Model Candidates AIC 

ARIMA (1,1,0) -97.28916 

ARIMA (1,1,4) -97.23681 

ARIMA (0,1,1) -97.03295 

ARIMA (1,1,1) -96.11443 

ARIMA (4,1,1) -95.74804 

ARIMA (2,1,0) -95.37009 

Table 4. p-value from White-Noise Test on Residue 

Model Candidates p-value 

ARIMA (1,1,4) 0.7476709 

ARIMA (4,1,1) 0.5848354 

ARIMA (1,1,0) 0.5143566 

ARIMA (0,1,1) 0.5070393 

ARIMA (1,1,1) 0.4954557 

ARIMA (2,1,0) 0.420635 
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Figure 5. ARIMA (1,1,4) Residual Check 

3.4. Forecasting 

Top 2 model candidates from Table 3 are used to make prediction for the next 5 month. Figure 6 visualize the 

forecast against data Test on blue line, we can see that the test value has uptrend in first 3 months and continue to 

fall in the next 2 months with overall data Test in a downtrend. Both candidates did also have downtrend but with 

different approach, ARIMA (1,1,0) has slow gradually decreasing, while ARIMA (1,1,4) has a decreasing zig-zag 

pattern. For better evaluating forecast accuracy, Table 7 show the result of accuracy test between model candidates 

against data Test. ARIMA (1,1,0) clearly has the best accuracy since all its accuracy test result closest to 0 compared 

to other candidates as the results are: ME = -4168.446, RMSE = 6332.401, MAE = 5032.100, MPE = -12.31296, 

MAPE = 14.20949. 

 

Figure 6. Forecasting of Model ARIMA (1,1,0) and ARIMA (1,1,4) 
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Table 7. Result of Forecast Accuracy Test 

Models ME RMSE  MAE MPE MAPE 

ARIMA (1,1,0) -4168.446* 6332.401* 5032.100* -12.31296* 14.20949* 

ARIMA (1,1,4) -4560.867 6548.114 5944.953 -13.17859 16.21795 

4. CONCLUSION 

Model ARIMA (1,1,0) clearly win the competition between candidate models, with result of accuracy tests 

closest to 0. While the ARIMA (1,1,0) has the same downtrend with the data Test, in Figure 6 we can see clearly that 

how bad the model’s performance to follow price movement. If we track the problem, time series data has non-

constant variance and non-constant mean in latest series compared to early series. Recall Figure 1, it is noticeable 

prior 2017 the price movements are not as dynamic as from 2017 onwards, therefore this data maybe not accurate 

representation of how Bitcoin currently behaves.  

As a conclusion, ARIMA (1,1,0) is the best model by the result of accuracy test compared to the other model, but 

clearly cannot be used as main tool to predict the bitcoin price due to its poor performance to predict price movement. 

Further study is needed to overcome the characteristic of Bitcoin Price time series data. 
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