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 In the Sumatra Region, tuberculosis (TB) is a disease that needs special attention because it 
tends to increase every year. Based on health theory, there are many factors that cause TB, but 

it is not easy to determine which factors have a significant effect. Therefore, in this study an 

analysis was carried out that could model, predict, and determine the factors causing TB disease 

in the Sumatra Region. The data used is data on TB cases in the Sumatra Region in 2018 taken 
from the Publication of the Central Statistics Agency. Poisson regression is an analysis that is 

suitable for modeling count data such as TB disease data. The assumption of Poisson regression 

is that the mean and variance of the response variables must be equal (equidispersion). 

However, the TB case data in the Sumatra Region in 2018 has an average value that is smaller 
than the variance (overdispersion) so it cannot be solved by Poisson regression. To overcome 

this problem, we need a method that can overcome overdispersion, namely Poisson Inverse 

Gaussian (PIG) regression. From the results of the analysis using PIG regression, it can be 
concluded that the factors that have a significant effect on TB cases in the Sumatra Region are 

the percentage of the male population (X1), the percentage of the productive age population 

(X2), the percentage of households with a floor area of ≤ 19m2 (X3), and the percentage of 

households that have access to proper sanitation (X4), where the model formed is  

�̂� = 𝑒𝑥𝑝⁡(18.97511 − 0.15742𝑋1 − 0.08825𝑋2 + 0.13871𝑋3 + 0.01159𝑋4) 

Based on the model, the predicted results of TB cases in the Sumatra Region had an average 

of 596.04178 where the lowest cases occurred in Pringsewu of 154.8943 and the highest cases 

occurred in Bukittinggi of 2719.59400. 
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1. INTRODUCTION 

The total population of Indonesia in 2019 was recorded at 268,074,600 people. This figure represents 3.52% of 

the world's population [1]. A large population can cause complex problems, one of which is health problems. 

Currently, there are several population health problems that need serious attention, one of which is Tuberculosis 

(TB). TB is an infectious disease caused by the bacterium Mycobacterium tuberculosis, which attacks various organs, 

especially the lungs. This disease if left untreated or incomplete treatment can lead to complications and even death 

[2]. Sumatra is the area with the 2nd most TB cases in Indonesia after Java. To find out the factors that have a 

significant effect on TB, it is necessary to analyze the case. 

1.1 Tree Regression 

Poisson regression is a form of regression analysis that is used to model data whose response variable is in the 

form of count (sum), which assumes that the Y variable has a Poisson distribution [3]. The Poisson regression model 

is written as follows:  

𝑌𝑖 = 𝜇𝑖 + 𝜀𝑖 ⁡⁡⁡⁡⁡⁡⁡𝑖 = 1,2,…, 

where Yi is the number of events and i is the average number of events and i is assumed to be unchanged from data 

to data [4]. 

1.2 Poisson Inverse Gaussian Regression 

PIG regression is a form of regression analysis of mixed distribution between Poisson and Inverse Gaussian. 

PIG regression is designed for data with a response variable in the form of counts that experience overdispersion 
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cases so that it cannot be solved by Poisson regression. PIG is determined by two parameters, namely the average (μ) 

as the location parameter and the dispersion parameter (τ) as the shape parameter [5]. 

If you want to know the relationship between a response variable Y and k predictor variables X1, X2,….,Xk, the 

multiple regression model to describe the relationship is as follows: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯+ 𝛽𝑘𝑋𝑘𝑖 + 𝜀𝑖⁡⁡⁡⁡⁡⁡𝑖 = 1,2,…,            

when expressed in vector is as follows : 

𝑌𝑖 = 𝑿𝑖
𝑇𝜷 + 𝜀𝑖 

and the expected value is 

𝜇𝑖⁡ = 𝐸(𝑌𝑖)  

= 𝐸(𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯+ 𝛽𝑘𝑋𝑘𝑖) + 𝐸(𝜀𝑖)  

= (𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯+ 𝛽𝑘𝑋𝑘𝑖) + 0  

= 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + ⋯+ 𝛽𝑘𝑋𝑘𝑖  

or when expressed in vector becomes 

𝜇𝑖 = 𝑿𝑖
𝑇𝜷                                                    (1) 

However, the model in equation (1.2.1) is not suitable when applied to the response variable with a PIG 

distribution. The response variable of the model can be a real number in the interval (-∞,∞), while the value of the 

response variable in the PIG model is a non-negative integer. To overcome this problem, a natural log (ln) connecting 

function is used on the average using a linear model, so that the relationship between the response variable and the 

linear combination of predictor variables is: 

ln⁡(𝜇𝑖) = 𝑿𝑖
𝑇𝜷 or⁡𝜇𝑖 = 𝑒𝑿𝑖

𝑇𝜷 

1.3 Parameter Testing 

Parameter testing was conducted to determine whether or not the influence of the predictor variable on the 

response variable was present. Parameter testing in the PIG regression model is carried out using simultaneous 

hypothesis testing on parameter and partial testing of parameters and. 

1. Simultaneous testing 

Simultaneous testing includes all parameters together with the following hypotheses: 

𝐻0:⁡𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0 

(Predictor variables simultaneously have no significant effect on the response variable) 

𝐻1:⁡at least one of 𝛽𝑖 ≠ 0, 𝑖 = 1,2,… , 𝑘 

(at least one predictor variable has a significant effect on the response variable) 

2. Partial testing 

Individual or partial testing is carried out with the following hypotheses: 

𝐻0:⁡𝛽𝑗 = 0⁡,⁡⁡⁡⁡𝑗 = 1,2,… , 𝑘 

(The j-th predictor variable has no significant effect on the response variable) 

𝐻1:⁡𝛽𝑗 ≠ 0⁡,⁡⁡⁡⁡𝑗 = 1,2,… , 𝑘 

(The j-th predictor variable has a significant effect on the response variable) 

Parameter testing on 𝜏: 

𝐻0:⁡𝜏 = 0 

𝐻1:⁡𝜏 ≠ 0 

1.4 Assumption Testing 

Some assumption tests that must be carried out in the PIG Regression analysis are as follows:  

1. Correlation test 

The following is the Pearson correlation test hypothesis: 

𝐻0: There is no correlation between variables 

𝐻1: There is a correlation between variables 
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2. Multicollinearity test 

One way to detect the occurrence of multicollinearity is to look at the value of the Variance Inflation Factor 

(VIF), which is a value that describes the increase in variance of the estimated parameters between predictor 

variables. VIF value > 10 indicates the presence of multicollinearity [6]. VIF can be written as follows: 

𝑉𝐼𝐹 =
1

(1 − 𝑅𝑌𝑗𝑙
2 )

 

3. Overdispersion test 

The Poisson regression model requires equidispersion, which is a condition when the mean and variance of the 

response variables are equal. However, sometimes there is an overdispersion phenomenon in the data modeled 

with the Poisson distribution. Overdispersion means the variance is greater than the mean. This indicates that 

the Poisson regression model is not suitable for these data [4]. One way that can be done to detect the presence 

or absence of overdispersion in the response variable to be studied is the Pearson chi-square test statistic as 

follows: 

𝑉𝑇 = ∑
(𝑦𝑖 − �̅�)2

�̅�

𝑛

𝑖=1

 

If the dispersion index value is less than 1, it can be said that underdispersion occurs, on the other hand, 

overdispersion occurs when the dispersion index value is more than 1 [7]. The hypothesis used is as follows: 

𝐻0: There is no overdispersion on the data.  

𝐻1: There is an overdispersion on the data. 

1.5 Selection of The Best Model with The Akaike Information Criteria (AIC) Method 

The AIC method is a method that can be used to select the best regression model found by Akaike and Schwarz. 

The method is based on the maximum likelihood estimation method. The AIC value can be calculated as follows [8]. 

𝐴𝐼𝐶 = 𝑒
2𝑘
𝑛

∑ �̂�𝑖
2𝑛

𝑖=1

𝑛
 

2. METHOD 

This study will use the PIG Regression model to model TB cases in the Sumatra Region in 2018. The data are 

taken from the publications of the Central Statistics Agency, entitled "Provinsi Dalam Angka 2019" and " Statistik 

Kesejahteraan Provinsi Tahun 2018" with district/city observation units in the Sumatra Region. The data consists of 

1 response variable, namely the number of TBs and 6 predictor variables, namely the percentage of the male 

population, the percentage of the productive age population, the percentage of households with a floor area of 19m2, 

the percentage of households that have access to proper sanitation, and the percentage of households that have access 

to proper sanitation. have access to adequate drinking water sources, and Percentage of poor people. 

The stages of the research carried out are as follows: 

1. Descriptive statistics, including the calculation of the maximum, minimum, mean, variance, and standard 

deviation of each variable. Calculations are carried out using the R 3.5.1 . program. 

2. Overdispersion test using AER package from software R 3.5.1. 

1. Correlation test using R 3.5.1. program. 

2. Multicollinearity test using VIF value. 

3. PIG regression modeling which consists of parameter estimation and parameter significance testing either 

simultaneously or partially. This process is carried out using the gamlss package from the R3.5.1 software. 

4. Selection of the best model based on the smallest AIC value.  

5. Interpretation of results and drawing conclusions. 
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3. RESULTS AND DISCUSSION 

3.1 Descriptive Statistics 

In this study, modeling of the number of TB cases in the Sumatra region was carried out using PIG regression. 

The descriptive statistical value of each of these variables can be seen in the table below: 

Tabel 1. Descriptive Statistics of Research Variables 

Variable Minimum Maximum Average Variance 

𝑌 0.000 5313.000 540.442 424543.974 

𝑋1 47.812 57.973 50.617 1.345 

𝑋2 55.770 73.030 65.653 7.666 

𝑋3 0.000 11.690 2.251 4.817 

𝑋4 7.400 99.210 64.795 439.368 

𝑋5 6.080 95.460 53.040 497.785 

𝑋6 2.390 27.790 11.155 26.283 

Based on Table 1, it can be seen that the number of TB cases in the Sumatra Region has an average of 540.442 

with a variant of 424543.974. The highest number of cases occurred in Palembang City as many as 5131 cases and 

the lowest cases occurred in West Lampung, South Lampung, Metro City, and Sibolga, namely 0 cases. 

3.2 Overdispersion Test Result 

The test criteria used are Reject H0 if p.value < α with value of 5% or 0.05. From the test results using the AER 

package on Software R, the p.value is 0.00946 < α = 0.05 so that there is enough evidence to reject H0. This shows 

that there is an overdispersion in the response variable so that the data analysis using PIG regression can be continued. 

3.3 Multicollinearity Test Results  

VIF value greater than 10 indicates the occurrence of multicollinearity in the data. From the test results using the R 

software, the VIF value is obtained as follows: 

Table 2. VIF Value of Predictor Table 

Varible 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓 𝑿𝟔 

VIF 1.20080 1.36809 1.25978 1.40328 1.29250 1.45783 

From Table 2 it can be seen that the VIF value for all predictor variables is less than 10, which means that there is no 

multicollinearity between predictor variables so that the analysis using PIG regression can be continued. 

3.4 Correlation Test Results 

The following are the results of correlation testing carried out using the R software: 

Table 3. Correlation Between Variables Xi and Y 

Variable 𝒓𝑿𝒊𝒀 p-value 

𝑋1 -0.01160 0.88560 

𝑋2 0.21623 0.00707 

𝑋3 0.26451 0.00091 

𝑋4 0.23746 0.00302 

𝑋5 0.24715 0.00200 

𝑋6 -0.12346 0.12720 
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Table 3 shows that with = 5% the predictor variables that have a relationship with the response variable are X2, 

X3, X4, and X5. However, the variables X1 and X2 are still included in the study because theoretically these two 

variables have a relationship with the response variable. there is no correlation with a value of 0 between the predictor 

variable and the response variable, so the analysis using PIG regression can be continued. 

3.5 PIG Regression Modeling 

PIG regression modeling can be done if the data meets all assumptions, namely that there is no multicollinearity 

and the data has overdispersion. PIG regression modeling on TB data in the Sumatra Region in 2018 was carried out 

using the GAMLSS package from the R software. All predictor variables used can produce several combinations of 

models, but in the discussion only convergent models are shown. The PIG regression model is said to be convergent 

if it reaches the deviation value or stable deviation at a certain iteration. 

The following is a convergent PIG regression model: 

�̂� = 𝑒𝑥𝑝(20.12895 − 0.15979𝑋1 − 0.09574𝑋2 + 0.12083𝑋3 + 0.00889𝑋4 + 0.00044𝑋5 − 0.03033𝑋6)  ,  𝜏 =

1.12080 

�̂� = 𝑒𝑥𝑝(20.33460 − 0.16267𝑋1 − 0.09618𝑋2 + 0.12237𝑋3 + 0.00891𝑋4 − 0.03111𝑋6)     , 𝜏 = 1.12610 

When written in vector form it becomes: 

[
�̂�1

�̂�2
] = 𝑒

[1 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6]

[
 
 
 
 
 
 
20.12895 20.33460
−0.15979 −0.16267
−0.09574 −0.09618
0.120830 0.122370
0.008890 0.008910
0.000440 0.000000
−0.03033 −0.03111]

 
 
 
 
 
 

 

After obtaining the parameters of the possible models, parameter testing is carried out to see if the model formed is 

significant. 

3.6 Parameter Test 

Parameter testing in PIG regression was carried out twice, namely simultaneous testing and partial testing. 

1. Simultaneous test 

Simultaneous parameter testing includes all parameters in the possible models that are formed. This test is 

carried out using the statistical value G. The hypothesis used in the simultaneous test is:  

𝐻0:⁡𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0  

𝐻1:⁡ at least one 𝛽𝑖 ≠ 0, 𝑖 = 1,2,… , 𝑘 

with the decision criteria reject H_0 if the value of Statistics 𝐺 > 𝜒(𝛼,𝑣)
2  

The following are the results of simultaneous parameter testing carried out using R software and Microsoft Office 

Excel: 

Table 4. Simultaneous Parameter Testing 

 Variables 𝐺 V 𝜒(𝛼,𝑣)
2  Conclusion 

Model 1 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6 2364.647 146 175.1976 Reject 𝐻0 

Model 2 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋6 2364.653 147 176.2938 Reject 𝐻0 

From Table 4 it can be seen that the value of the G statistic in the two possible models is greater than the value of 

𝜒(𝛼,𝑣)
2 . This shows that together the predictor variable values have a significant effect on the response variable. 
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2. Partial test 

Individual parameter testing is carried out to see which predictor variables have a significant influence on the 

response variable. Individual parameter testing is carried out on parameters and with the following hypothesis:  

a. Test on 𝛽 

𝐻0:⁡𝛽𝑗 = 0⁡,⁡⁡⁡⁡𝑗 = 1,2,… , 𝑘  

𝐻0:⁡𝛽𝑗 ≠ 0⁡,⁡⁡⁡⁡𝑗 = 1,2,… , 𝑘  

b. Test on 𝜏 

𝐻0:⁡𝜏 = 0  

𝐻0:⁡𝜏 ≠ 0⁡  

The test criteria used is to reject H0 if p.value < α. The following are the results of individual parameter testing 

carried out using the R software: 

Tabel 5. Parameter Testing Individually 

 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝜏 

Model 1 20.12895 -0.15979 -0.09574 0.12083 0.00889 0.00044 -0.0303 1.12080 

pvalue 0.00014 0.10185 0.01987 0.01712 0.10027 0.93197 0.18339 0.00000 

Model 2 20.3346 -0.16267 -0.09618 0.12237 0.00891 - -0.0311 1.12610 

pvalue 0.00000 0.08350 0.01870 0.01330 0.09740 - 0.13910 0.00000 

By using  = 0.10, the result is that in the first model the parameter 0 has a significant effect on the << 0.01 

level, the 2 parameter has a significant effect on the 1.987% level. The parameter 3 has a significant effect at the 

level of 1.1712%, while the other parameters have no significant effect. In the second model, the 0 parameter has a 

significant effect on the << 0.01 level, the 1 parameter has a significant effect on the 8.35% level, the 2 parameter 

has a significant effect on the 1.87% level, the 3 parameter has a significant effect on 1.33% level, the parameter 4 

has a significant effect at the level of 9.74%, while the parameter 6 has no significant effect. For the dispersion 

parameter (τ), both models have significant parameters at the level of << 0.01%. That is, both models are able to 

overcome the problem of overdispersion. 

3.7 Best Model Selection 

Parameter testing produces models with significant parameters. From these models, the best model is selected 

based on the smallest AIC value. 

Table 6. Comparison of AIC values 

 AIC 

Model 1 2382.579 

Model 2 2378.905 

In Table 6 it can be seen that the model that has the smaller AIC value is model 2, so the better model used in this 

study is model 2 with the following details: 

Table 7. Estimated Parameters of The Selected Model (Model 2) 

Parameter Estimated value 

𝛽0 18.97511 

𝛽1 -0.15742 

𝛽2 -0.08825 

𝛽3 0.13871 

𝛽4 0.01159 
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When written in the form of a model, it becomes : 

�̂� = 𝑒𝑥𝑝⁡(18.97511 − 0.15742𝑋1 − 0.08825𝑋2 + 0.13871𝑋3 + 0.01159𝑋4) 

The model above shows that every 1% addition of the percentage of the male population will double the average 

TB case by exp(-0.15742) or 0.85435 times the original TB case average if other variables are constant. Every 1% 

addition of the percentage of the productive age population will double the average TB case by exp(-0.08825) or 

0.91553 times the original average if other variables remain constant. Each additional 1% of the percentage of 

households with a floor area of ≤ 19m2 will multiply the average TB cases by exp(0.13871) or 1.14879 times the 

average TB cases from the original average if other variables remain constant. Each additional 1% of the percentage 

of households that have access to proper sanitation will double the average TB case by exp(0.01159) or 1.01166 

times the previous average if other variables remain constant. 

3.8 Prediction 

The prediction results of TB cases in the Sumatra Region as a whole had an average of 596.04178 where the 

lowest cases occurred in Pringsewu at 154.8943 and the highest cases occurred in Bukittinggi at 2719.59400. The 

following is a comparison chart between the observed values and predictions: 

 
Figure 1. Comparison of observed values with predicted values 

From Figure 1 it can be seen that the predicted value is close to the actual value because it is still around the same 

value. 

4. CONCLUSION 

 The results of the analysis of TB cases in the Sumatra Region in 2018 showed that the factors that significantly 

influenced were the percentage of the male population (X1), the percentage of the productive age population (X2), 

the percentage of households with a floor area of ≤ 19m2 (X3), and the percentage of households that have access to 

proper sanitation (X4). The model formed is as follows:  

�̂� = 𝑒𝑥𝑝⁡(18.97511 − 0.15742𝑋1 − 0.08825𝑋2 + 0.13871𝑋3 + 0.01159𝑋4) 
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