Main Article Content

Abstract

The Highly Pathogenic Avian Influenza (HPAI) H5N1 virus caused extraordinary incidents in several countries, especially Asia, Africa, and Europe. The disease's fatality rate caused by the H5N1 virus reaches 60%. This incident raised concerns about a wider HPAI H5N1 virus pandemic if effective human-to-human transmission occurred. Therefore, the World Health Organization (WHO) calls on all countries to prepare themselves for a pandemic that may occur. One of the strategies in preparation for this pandemic is to develop a vaccine. So far, vaccines are effective in disease prevention efforts because they can work to trigger a natural immune response and induce a memory response against the pathogen in question. Several strategies are needed to develop an effective influenza vaccine in carrying out vaccine development research and in-depth understanding of (i) virology, (ii) virus life cycle, (iii) host immune response to infection, (iv) pathology, and (v) HPAI H5N1 vaccine development strategy. Until now, many HPAI H5N1 vaccines have been developed, from vaccines developed using conventional methods to alternative vaccines using more modern methods. The results of the development of the vaccine are expected to provide provisions for a possible pandemic caused by the HPAI H5N1 virus.


Keywords : Influenza, virus, vaccine

Keywords

influenza virus vaccine

Article Details

How to Cite
S,Si, M.Biomed, D. R. (2024). DEVELOPMENT OF HIGHLY PATHOGENIC AVIAN INFLUENZA VACCINE FOR PANDEMIC INFLUENZA PREPAREDNESS: A REVIEW. Jurnal Kedokteran Raflesia, 10(1), 24–45. https://doi.org/10.33369/juke.v10i1.35776

References

  1. Belshe RB, Frey SE, Graham I, Mulligan MJ, Edupuganti S, Jackson LA, et al. Safety and
  2. immunogenicity of influenza A H5 subunit vaccine: effect of vaccine schedule and antigenic variant.
  3. J Infec Dis. 2011;203:666-73.
  4. Bernstein DI, Edwards KM, Dekker CL, Belshe R, Talbot HKB, Graham IL, et al. Effect of adjuvans on
  5. the safety and immunogenicity of an avian influenza H5N1 vaccine in adults. J infect Dis.
  6. ;197:667-75.
  7. Bratawidjaja KG, Rengganis I. Imunologi Dasar. Jakarta : Balai Penerbit FKUI; 2009.
  8. Bright RA, Carter DM, Crevar CJ, Toapanta FR, Steckbeck JD, et al. Cross-clade protective immune
  9. responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle.
  10. Plos One. 2008;3(1): e1501.
  11. Brun A, Albina E, Barret T, Chapmn DAG, Czub M, Dixon LK, et al. Antigen delivery system for veterinary
  12. vaccine development viral-vector based delivery system. Vaccine. 2008;26:6508-28.
  13. Bublot M, Pritchard N, Cruz JS, Mickle TR, Selleck P, Swayne DE. Efficacy of a fowlpox-vectored avian
  14. influenza H5 vaccine against Asian H5N1 highly pathogenic virus challenge. Avi Dis. 2007;51:498-
  15. Carter JB, Saunders VA. Virology: Principles and Applications. West Sussex: John Wiley & Sons Ltd;
  16. Chen M, Cheng TJR. Huang Y, Jan JT, Ma SH, Yu AL. A consensus-hemagglutini-based DNA vaccine
  17. that protect mice against divergent H5N1 that protects mice against divergent H5N1 influenza
  18. viruses. Proc Nat Ac Sci. 2008;105(36):13538-43.
  19. Cox RJ. Brokstad KA, Ogra P. Influenza Virus: Immunity and vaccination strategies: comparison of the
  20. immune response to inactivated and live, attenuated influenza vaccines. Scand J Immunol.
  21. ;59:1-15.
  22. De Filette M, Jou WM, Birkett A, Lyons K, Schultz B. Universal influenza A vaccine: optimization of M2-
  23. based construct. Virology. 2005;337:149-61.
  24. Dharmayanti NPI, Ibrahim F, Soebandrio A. Amantadine resistant of Indonesian subtype influenza
  25. viruses during 2003-2008. Microbiol Indones. 2010;4(1):11-6.
  26. Dong L, Liu F, Fairman J, Hong DK, Lewis DB, Monath T. Cationic liposome-DNA complexes (CLDC)
  27. adjuvant enhances the immunogenicity and cross-protective efficacy of a pre-pandemic influenza
  28. A H5N1 vaccine in mice. Vaccine. 2012;30:254-264.
  29. Du L, Zhou Y, Jiang S. Research and development of universal influenza vaccines. Micro Infec.
  30. ;12:280-6.
  31. Ehlich HJ, Muller M, Oh HML, Tambyah PA, Joukhadar C, Montomoli E, et al. A clinical trial of a whole-
  32. virus H5n1 vaccine derived from cell culture. N Engl J Med. 2008;358:2573-84.
  33. Epstein SL, Tumpey TM, Misplon JA, Lo C-Y, Cooper LA, Subbarao K, et al. DNA vaccine expressing
  34. conserved influenza virus proteins protective against H5N1 challenge infection in mice. Emerg
  35. Infect Dis. 2002; 8(8):796-801.
  36. Fiers W, de Filette M, El-Bakkouri K, Schepens B, Roose K, Schotsaert M, et al. M2e-based universal
  37. influenza A vaccine. Vaccine. 2009;27:6280-3.
  38. Food and Drug Administration. Influenza virus vaccine, H5N1 (for national stockpile). Available at:
  39. http://www.fda.gov/default.htm
  40. Fragapane E, Gasparini R, Schioppa F, Laghi-Pasini F, Montomoli E, Banzhoff A. A heterologous MF59-
  41. adjuvanted H5N1 prepandemic influenza booster vaccine induces a robust, cross-reactive immune
  42. response in adults and elderly. Cli Vac Immunol. 2010;17(11):1817-9.
  43. Galli G, Medini D, Borgogni E, Zedda L, Bardelli M, Malzone C, et al. Adjuvanted H5N1 vaccine induces
  44. early CD4_T cell response that predict long-term persistence of protective antibody levels. Proc
  45. Nat Ac Sci. 2009;106(10):3877-82.
  46. Gerhard W, Mozdzanowska K, Zharikova D. Prospects for universal influenza virus vaccine. Emerg
  47. Infec Dis. 2006;12(4):569-74.
  48. Gillim-Ross L, Subbarao K. Emerging Respiratory Viruses: Challenges and Vaccine Strategies. Clin
  49. Microbiol Rev. 2006;19(4):614-36.
  50. Govorkova EA, Webby RJ, Humberd J, Seiler JP, Webster RG. Immunization with reverse-genetic-
  51. produce H5N1 vaccine protect ferrets against homologous and heteroloogous challenge. J Infect
  52. Dis. 2006;194:159-67.
  53. Gurwith Marc, Lock M, Taylor EM, Ishioka G, Alexander J, Mayall T, et al. Safety and immunogenicity
  54. of an oral, replicating adenovirus serotype 4 vector vaccine for H5N1 influenza: a randomized,
  55. double-blind, placebo-controlled, phase I study. Lancet Infec Dis. 2013;13:238-50.
  56. Hartikka J, Bozoukova V, Yang CK, Ye M, Rusalov D, Shlapobersky M. Vaxvectin®, a cationic lipid-
  57. based adjuvant for protein-based influenza vaccines. Vaccine. 2009;27:6399-403.
  58. Heiny T, Miotto O, Srinivasan KN, Khan AM, Zhang GL, Brusic V, et al. Evolutionary conserved protein
  59. sequences of influenza A viruses, avian, and human as vaccine target. Plose One.
  60. ;2(11):e1190.
  61. Jimenez GS, Planchon R, Wei Q, Rusalov D, Geall A, Enas J. VaxvectinTM formulated influenza DNA
  62. vaccines encoding NP and M2 viral proteins protect mice against lethal viral challenge. Hum Vac.
  63. ;3(5):157-64.
  64. Johnson NP, Mueller J. Updating the accounts: Global mortality of the 1918-1920 "Spanish" influenza
  65. pandemic. Bull Hist Med 2002;76:105-15.
  66. Kamps BS, Hoffmann C. Preiser W. Editor. Influenza Report 2006. Available from:
  67. www.InfluenzaReport.com.
  68. Kang S-M, Song J-M, Quan F-S, Compans RW. Influenza vaccines based on virus-like particles. Virus
  69. Res. 2009;143(2):140-6.
  70. Kang S-M, Yoo D-G, Lipatov AS, Song J-M, Davis CT, et al. Induction of long-term protective immune
  71. responses by influenza H5N1 virus-like particles. Plos One. 2009;4(3): e4667
  72. Karron RA, Talaat K, Luke C, Callahan K, Thumar B, DiLorenzo S, et al. Evaluation of two live attenuated
  73. cold-adapted H5N1 influenza virus vaccines in healthy adults. Vaccine. 2009;27:4953-60.
  74. Khodihalli S, Goto H, Kobasa DL, Krauss S, Kawaoka Y, Webster. DNA vaccine encoding hemagglutinin
  75. provides protective immunity against H5N1 influenza virus infection in mice. J Virol.
  76. ;73(3):2094-8.
  77. Khurana S, Wu J, Verma N, Verma S, Raghunandan R, Manischewitz J, et al. H5N1 virus-like particle
  78. vaccine elicits cross-reactive neutralizing antibodies that prefentially binds to the oligomeric form
  79. of influenza virus hemagglutinin in humans. J Virol. 2011;85(21):10945-54.
  80. Kodihalli S, Kobasa DL, Webster RG. Strategies for inducing protection against avian inflluenza A virus
  81. subtype with DNA vaccines. Vaccine.2000;18:2592-99.
  82. Kreijtz JHCM, Suezer Y, de Mutsert G, van Amerongen G, Schnierle BS, Kuiken T. Preclinical evaluation
  83. of a modified vaccinia virus Ankara (MVA)-based vaccine against influenza A/H5N1 viruses.
  84. Vaccine. 2009;27:6296-9.
  85. Kutzler MA, Weiner DB. DNA vaccines: ready prime time? Nat Rev. 2008;9:776-88.
  86. Kyriakis CS, de Vleeschauwer A, Barbe F, Bublot M, van Reeth K. Safety, immunogenicity and efficacy
  87. of poxvirus-based vector vaccines expressing the haemaglutinin gene of a highly pathogenic H5N1
  88. avian influenza in pigs. Vaccine. 2009;27:2258-64.
  89. Lalor PA, Webby RJ, Morrow J, Rusalov D, Kaslow DC, Rolland A, et al. Plasmid DNA-based vaccines
  90. protect mice and ferrets against lethal challenge with A/Vietnam/1203/04 (H5N1) influenza virus. J
  91. Infect Dis. 2008;197:1643-52
  92. Landry N, Ward BJ, Tre'panier S, Montomoli E, Dargis M, et al. (2010) Preclinical and Clinical
  93. Development of Plant-Made Virus-Like Particle Vaccine against Avian H5N1 Influenza. Plos One.
  94. ;5(12): e15559.
  95. Lekcharoensuk P, Wiriyarat W, Petcharat N, Lekcharoensuk C, Auewarakul P, Richt JA. Clone. Cloned
  96. cDNA of A/swine/Iowa/15/1930 internal genes as a candidate backbone for reverse genetics
  97. vaccine against influenza A viruses. Vaccine. 2012. 30(8):1453-9.
  98. Levie K, Roels IL, Hoppenbrouwers K, Kervyn A-D, Vandermeulen C, Forgus S, et al. An adjuvanted,
  99. low dose, pandemic influenza A (H5N1) vaccine candidate is safe, immunogenic, and induces
  100. cross-reactive immune responses in healthy adults. J Infec Dis. 2008;198:642-9.
  101. Luke CJ, Subbarao K. Vaccines for Pandemic Influenza. Emerg Infec Dis. 2006;12(1):66-72.
  102. Luo M, Tao P, Li J, Zhou S, Guo D, Pan Z. Immunization with plasmid DNA encoding influenza A virus
  103. nucleoprotein fused to a tissue plasminogen activator signal sequence elicits strong immune
  104. responses and protection against H5N1 challenge in mice. J Virol Method. 2008;154:121-27.
  105. Nicolson C, Major D, Wood JM, Robertson JS. Generation of influenza vaccine viruses on Vero cells by
  106. reverse genetics: an H5N1 candidate vaccine strain produced under a quality system. Vaccine.
  107. ;23:2943-52.
  108. Pearce MB, Belser JA, Gustin KM, Pappas C, Houser KV, Sun X, et al. Seasonal trivalen inactivated
  109. influenza vaccine protects against 1918 Spanish influenza virus infection in ferrets. J Virol.
  110. ;86(13):7118-25.
  111. Peiris JSM, Cheung CY, Leung CYH, Nicholls JM. Innate immune responses to influenza A H5N1: friend
  112. or foe? Trends Immunol. 2009;30:574-84.
  113. Peiris JSM, de Jong MD, Guan Y. Avian Influenza Virus (H5N1): a threat to human health. Clin Microbiol
  114. Rev. 2007;20(2):243-67.
  115. Peiris JSM, Hui KPY, Yen H. Host response to influenza virus: protection versus immunopathology. Curr
  116. Opp Immunol. 2010;22:475-81.
  117. Qiao C, Jiang Y, Tian G, Wang X, Li C, Xin X, et al. Recombinant fowlpox virus vector-based vaccine
  118. completely protects chickens from H5N1 avian influenza virus. Antivir Res. 2009;81:234-8.
  119. Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvans for vaccine development. Trends
  120. Imunol. 2008; 30(1):23-32.
  121. Rimmelzwaan GF, Class ECJ, van Amerongen G, de Jong JC, Osterhaus ADME. ISCOM vaccine
  122. induced protection against a lethal challenge with a human H5N1 influenza virus. Vaccine.
  123. ;17:1355-8Samji T. Influenza A: Understanding the viral life cycle. Yale J Bio Med.
  124. ;82:153-159.
  125. Singh N, Pandey A, Jayashankar L, Mittal SK. Bovine adenoviral vector-based H5N1 influenza vaccine
  126. overcomes exceptionally high levels of pre-existing immunity against human adenovirus. Mol Ther.
  127. ;16(5):965-71.
  128. Skeik N, Jabr FI. Influenza viruses and the evolution of avian influenza virus H5N1. Int J Infect Dis.
  129. ;12:233-38.
  130. Smith LR, Wloch MK, Ye M, Reyes LR, Boutsaboualoy S, Dunne CE, et al. Phase 1 clinical trials of the
  131. safety and immunogenicity of adjuvanted plasmid DNA vaccines encoding influenza A virus HA
  132. hemagglutinin. Vaccine. 2010;28:2565-72.
  133. Stephenson I, Bugarini R, Nicholson KG, Podda A, Wood JM, Zambon MC, et al. Cross-reactivity to
  134. highly pathogenic avian influenza H5N1 viruses after vaccination with nonadjuvanted and MF59-
  135. adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a potential priming strategy. J Infec
  136. Dis. 2005;191:1210-5.
  137. Stephenson I, Democratis J. Influenza: current threat from avian influenza. British Med Bulletin.
  138. ;75&76:63-80.
  139. Subbarao K, Chen H, Swayne D, Mingay L, Fodor E, Brownlee G, et al. Evaluation of genetically
  140. modified reassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based
  141. reverse genetics. Virology. 2003;305:192-200.
  142. Subbarao K. Murphy BR, Fauci AS. Development of effective vaccines against pandemic influenza.
  143. Immunity. 2006;24:5-9.
  144. Suguitan Jr. ALS, McAuliffe J, Mills KL, Jin H, Duke G, Lu B, et al. Live, attenuated influenza vaccines
  145. provide broad cross-protection in mice and ferrets. Plos Med. 2006; 3:1541-54.
  146. Swiss Institute of Bioinformatics. Viral zone: H5N1 subtype. Available from http://viralzone.expasy.org
  147. Thompkins SM, Zao ZS, Lo CY, Misplon JA, Liu T, Ye Z, et al. Matrix protein 2 vaccination and protection
  148. against influenza viruses, including subtype H5N1. Emerg Infec Dis. 2007;13(3):426-35.
  149. Toro H, Tang DC, Suarez DL, Syltec MJ, Pfeiffer J, van Kampen KR. Protective avian influenza in ovo
  150. vaccinationwith non-replicating human adenovirus vector. Vaccine. 2007;25(15):2886-91.
  151. Ungchusak K, Auewarakul P, Dowell SF, Kitphati R, Auwanit W, Puthavathana P, et al. Probable
  152. person-to-person transmission of Avian Influenza A (H5N1). N Eng J Med. 2005;352(4):333-40.
  153. Wang J, Osterrieder N. Generation of an infectious clone of duck enteritis virus (DEV) and of an vectored
  154. DEV expressing hemmagglutinin of H5N1 avian influenza virus. Vir Res. 2011;159:23-31.
  155. Webby RJ, Perez DR, Coleman JS, Guan Y, Knight JH, Govorkova EA, et al. Responsiveness to a
  156. pandemic alert: use of reverse genetics for rapid development of influenza vaccines. Lancet.
  157. ;363:1099-103.
  158. Weiner DB, Nabel GJ. The development of gene-based vectors for immunization. In: Vaccines. 6th
  159. edition. Elsivier, Inc. 2013, p.1232-42.
  160. World Health Organization. Cumulative number of confirmed human cases for avian influenza A(H5N1)
  161. reported to WHO, 2003-2013. 12 Maret 2013. Available from
  162. http://www.who.int/influenza/human_animal_interface/EN_GIP_20130312CumulativeNumberH5N
  163. cases.pdf
  164. World Health Organization. H5N1 avian influenza: Timeline of major events. 17 Desember 2012.
  165. Available from http://www.who.int/influenza/H5N1_avian_influenza_update
  166. World Health Organization. Pandemic influenza preparedness framework: for the sharing of influenza
  167. viruses and acccess to vaccines and other benefits. 2011. Available from
  168. http://www.who.int/influenza/resources/en/
  169. World Health Organization. World now at the start of 2009 influenza pandemic. 15 Juni 2007. Available
  170. from http://www.who.int/mediacentre/news/statements/2009
  171. Wu Q, Fang L, Wu X, Li B, Luo R, Yu Z, et al. A pseudotype baculovirus-mediated vaccine confers
  172. protective immunity against lethal challenge with H5N1 avian influenza virus in mice and chickens.
  173. Mol Imunol. 2009;46:2210-7.
  174. Yamada S, Suzuki Y, Suzuki T, Le MQ, Nidom CA, Sakai-Tagawa Y, et al. Haemagglutinin mutations
  175. responsible for the binding of H5N1 influenza A viruses to human-type receptor. Nature.
  176. ;444:378-82.
  177. Yang S-G, Wo J-E, Li M-W, Mi F-F, Yu C-B, Lu G-L, et al. Construction and cellular immune response
  178. induction of HA-based alphavirus replicon vaccines against human-avian influenza (H5N1).
  179. Vaccine. 2009;27:7451-8.