Main Article Content

Abstract

Early detection of leptospirosis is critical for effective disease management and reducing mortality, particularly in tropical developing countries where the disease burden is high and clinical presentation resembles other febrile illnesses such as malaria and dengue. The incidence of leptospirosis can escalate dramatically following flooding disasters, with mortality rates substantially increasing. This review assesses the effectiveness of various early detection methods, including molecular techniques (PCR), serological assays, rapid lateral flow immunoassays (LFIs), and geospatial early warning systems. LFIs demonstrate moderate sensitivity (~68%) and high specificity (~93%), indicating potential utility for screening in endemic areas, although they require confirmatory testing to ensure diagnostic accuracy. IgM-based assays show superior sensitivity compared to IgG-based methods, suggesting greater promise for early diagnosis. Despite advancements, challenges remain in optimizing diagnostic tools suitable for resource-limited tropical settings to enable timely and accurate detection. This underscores the need for integrated early warning systems combined with improved diagnostic technologies to enhance leptospirosis control and prevention strategies.

Keywords

Climate Change Early Detection Effectiveness Leptospirosis

Article Details

How to Cite
Agustin Hanapi, A. Y. M. (2025). Effectiveness of Early Detection of Leptospirosis in Tropical Developing Countries: A Literature Review . Jurnal Kedokteran Raflesia, 11(1), 48–60. https://doi.org/10.33369/juke.v11i1.43744

References

  1. REFERENCES
  2. Antima, & Banerjee, S. (2023). Modeling the dynamics of leptospirosis in India. Scientific Reports, 13(1), 1–15. https://doi.org/10.1038/s41598-023-46326-2
  3. Bradley, E. A., & Lockaby, G. (2023). Leptospirosis y el medio ambiente: una revisión y direcciones futuras. Pathogens, Multidisciplinary Digital Publishing Institute, 12(9). https://doi.org/10.3390/pathogens12091167
  4. Ciurariu, E., Prodan-Barbulescu, C., Mateescu, D. M., Tutac, P., Sorop, V. B., Susan, M., & Varga, N. I. (2025). Diagnostic Advances in Leptospirosis: A Comparative Analysis of Paraclinical Tests with a Focus on PCR. Microorganisms, 13(3), 1–15. https://doi.org/10.3390/microorganisms13030667
  5. Cunha, M., Costa, F., Ribeiro, G. S., Carvalho, M. S., Reis, R. B., Nery, N., Pischel, L., Gouveia, E. L., Santos, A. C., Queiroz, A., Wunder, E. A., Reis, M. G., Diggle, P. J., & Ko, A. I. (2022). Rainfall and other meteorological factors as drivers of urban transmission of leptospirosis. PLoS Neglected Tropical Diseases, 16(4), 1–15. https://doi.org/10.1371/journal.pntd.0007507
  6. Douchet, L., Goarant, C., Mangeas, M., Menkes, C., Hinjoy, S., & Herbreteau, V. (2022). Unraveling the invisible leptospirosis in mainland Southeast Asia and its fate under climate change. Science of the Total Environment, 832(March), 155018. https://doi.org/10.1016/j.scitotenv.2022.155018
  7. Douchet, L., Menkes, C., Herbreteau, V., Larrieu, J., Bador, M., Goarant, C., & Mangeas, M. (2024). Climate-driven models of leptospirosis dynamics in tropical islands from three oceanic basins. PLoS Neglected Tropical Diseases, 18(4), 1–21. https://doi.org/10.1371/journal.pntd.0011717
  8. Lotto Batista, M., Rees, E. M., Gómez, A., López, S., Castell, S., Kucharski, A. J., Ghozzi, S., Müller, G. V., & Lowe, R. (2023). Towards a leptospirosis early warning system in northeastern Argentina. Journal of the Royal Society Interface, 20(202), 0–7. https://doi.org/10.1098/rsif.2023.0069
  9. Muñoz-Zanzi, C., Dreyfus, A., Limothai, U., Foley, W., Srisawat, N., Picardeau, M., & Haake, D. A. (2025). Leptospirosis - Improving Healthcare Outcomes for a Neglected Tropical Disease. Open Forum Infectious Diseases, 12(2), 1–9. https://doi.org/10.1093/ofid/ofaf035
  10. Mwongela, J. M., Kanyiri, C., & Kitetu, V. (2025). Leptospirosis Dynamics With Misdiagnosis: A Review. Journal of Applied Mathematics, 2025(1). https://doi.org/10.1155/jama/1691122
  11. Nualnoi, T., Lomlim, L., & Naorungroj, S. (2024). Accuracy of rapid lateral flow immunoassays for human leptospirosis diagnosis: A systematic review and meta-analysis. PLoS Neglected Tropical Diseases, 18(5), 90–95. https://doi.org/10.1371/journal.pntd.0012174
  12. Pal, M., Roba Bulcha, M., & Mitiku Bune, W. (2021). Leptospirosis and One Health Perspective. American Journal of Public Health Research, 9(4), 180–183. https://doi.org/10.12691/ajphr-9-4-9
  13. Parra Barrera, E. L., Bello Piruccini, S., Rodríguez, K., Duarte, C., Torres, M., & Undurraga, E. A. (2023). Demographic and clinical risk factors associated with severity of lab-confirmed human leptospirosis in Colombia, 2015–2020. PLOS Neglected Tropical Diseases, 17(7), e0011454. https://doi.org/10.1371/journal.pntd.0011454
  14. Rajapakse, S. (2022). Leptospirosis: Clinical aspects. Clinical Medicine, Journal of the Royal College of Physicians of London, 22(1), 14–17. https://doi.org/10.7861/clinmed.2021-0784
  15. Ranieri, T. M., Viegas da Silva, E., Vallandro, M. J., Oliveira, M. M. de, Barcellos, R. B., Lenhardt, R. V., Timm, L. N., Campos, A. S., Simoni, C., Abbad, P. R. da S., Brack, D. B., Rech, T. F., Silveira, J. de O., Estevam, V. O., Fonseca, L. X., Galan, D. I., & Schneider, M. C. (2025). Leptospirosis Cases During the 2024 Catastrophic Flood in Rio Grande Do Sul, Brazil. Pathogens, 14(4), 1–19. https://doi.org/10.3390/pathogens14040393