Main Article Content

Abstract

Metode pelatihan intensitas tinggi, seperti High-Intensity Interval Training (HIIT) dan Sprint Interval Training (SIT), telah menjadi semakin populer sebagai strategi efektif untuk meningkatkan kinerja atletik melalui adaptasi fisiologis yang signifikan. Tinjauan ini menggunakan analisis naratif dari literatur ilmiah terbaru (2015-2025) untuk memeriksa mekanisme adaptasi tubuh terhadap pelatihan intensitas tinggi, termasuk peningkatan kapasitas aerobik (VO₂max), efisiensi metabolik, penyangga laktat, dan fungsi mitokondria. Temuan menunjukkan bahwa baik HIIT maupun SIT dapat meningkatkan kinerja kardiovaskular dan neuromuskular dalam periode pelatihan yang relatif singkat, terutama ketika disesuaikan dengan kebutuhan individu. Namun, respons adaptif tubuh bervariasi dan dapat dipengaruhi oleh faktor-faktor seperti kebugaran dasar, usia, dan kondisi metabolik. Oleh karena itu, pendekatan berbasis bukti dan yang dipersonalisasi sangat penting untuk mengoptimalkan hasil pelatihan. Wawasan ini memberikan panduan berharga bagi pelatih, fisiolog olahraga, dan profesional kebugaran dalam mengembangkan intervensi yang ditargetkan untuk mencapai kinerja fisik puncak.

Keywords

Fungsi mitokondria pelatihan interval intensitas tinggi pelatihan interval sprint adaptasi fisiologis VO₂max

Article Details

How to Cite
Widyawati, D. (2025). Peran Adaptasi Fisiologis terhadap Latihan Intensitas Tinggi (High-Intensity Training) dalam Optimalisasi Performa Atletik: Tinjauan Literatur Terkini. Jurnal Kedokteran Raflesia, 11(2), 61–76. https://doi.org/10.33369/juke.v11i2.44565

References

  1. Akter, S., Rahman, M. M., Rouyard, T., Aktar, S., Nsashiyi, R. S., & Nakamura, R. (2024). A systematic review and network meta-analysis of population-level interventions to tackle smoking behaviour. Nature Human Behaviour, 8(12), 2367–2391. https://doi.org/10.1038/s41562-024-02002-7
  2. Aslam, S., Habyarimana, J. D. D., & Bin, S. Y. (2025). Neuromuscular adaptations to resistance training in elite versus recreational athletes. Frontiers in Physiology, 16. https://doi.org/10.3389/fphys.2025.1598149
  3. Barbieri, A., Fuk, A., Gallo, G., Gotti, D., Meloni, A., La Torre, A., Filipas, L., & Codella, R. (2024). Cardiorespiratory and metabolic consequences of detraining in endurance athletes. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1334766
  4. Batterson, P. M., McGowan, E. M., Stierwalt, H. D., Ehrlicher, S. E., Newsom, S. A., & Robinson, M. M. (2023). Two weeks of high-intensity interval training increases skeletal muscle mitochondrial respiration via complex-specific remodeling in sedentary humans. Journal of Applied Physiology, 134(2), 339–355. https://doi.org/10.1152/japplphysiol.00467.2022
  5. Benhammou, S., Clemente, F. M., Mourot, L., & Belkadi, A. (2025). Physiological and Biomechanical Responses Induced by a Continuous Test and an Intermittent Test in Middle-Distance Runners. International Journal of Sports Physiology and Performance, 20(5), 638–643. https://doi.org/10.1123/ijspp.2024-0350
  6. Bharlaman, M. B. F., Kusuma, I. D. M. A. W., Kusnanik, N. W., Prianto, D. A., & Pranoto, A. (2024). Physiological adaptations in small-side games combined with speed-endurance training: analyzing heart rate and rate of perceived exertion. Pedagogy of Physical Culture and Sports, 28(5), 407–414. https://doi.org/10.15561/26649837.2024.0509
  7. Bishop, D. J., Botella, J., Genders, A. J., Lee, M. J.-C., Saner, N. J., Kuang, J., Yan, X., & Granata, C. (2019). High-Intensity Exercise and Mitochondrial Biogenesis: Current Controversies and Future Research Directions. Physiology, 34(1), 56–70. https://doi.org/10.1152/physiol.00038.2018
  8. BMC Sports Science, Medicine and Rehabilitation. (2023). Home-based high-intensity interval training improves cardiorespiratory fitness: A systematic review and meta-analysis, 15, Article 166. https://doi.org/10.1186/s13102-023-00777-2
  9. Čaprić, I., Stanković, M., Bojić, I., Katanić, B., Jelaska, I., Pezelj, L., Masanovic, B., Stefanica, V., & Govindasamy, K. (2025). Effects of Different Types of High-Intensity Interval Training (HIIT) on Physical Performance in Female Basketball Players—A Systematic Review. Life, 15(8), 1180. https://doi.org/10.3390/life15081180
  10. Diahputri, N. M. N., & Sundari, L. P. R. (2022). Respom Fisiologis dan Biomolekuler Pada High Intensity Interval Training ( HIIT ). Jurnal Kesehatan Terpadu, 6(2), 79–84. https://jurnal.undhirabali.ac.id/index.php/kesehatan/article/view/2385
  11. Eather, N., Stansfield, K., Babic, M., & Lubans, D. R. (2024). The Development and Evaluation of Netball-Specific High-Intensity Interval Training Sessions: The Netball-HIIT Study. Sports, 12(1), 34. https://doi.org/10.3390/sports12010034
  12. Evangelista, A. L., de Camargo, J. B. B., Rica, R. L., Carnevali Júnior, L. C., Mallett, G. S., Bullo, V., Bergamin, M., Gobbo, S., & Bocalini, D. S. (2025). Different whole body HIIT protocols do not promote different muscle thickness and functional adaptations among healthy physically active subjects. Frontiers in Sports and Active Living, 6. https://doi.org/10.3389/fspor.2024.1513030
  13. Galán-Rioja, M. Á., Gonzalez-Ravé, J. M., González-Mohíno, F., & Seiler, S. (2023). Training Periodization, Intensity Distribution, and Volume in Trained Cyclists: A Systematic Review. International Journal of Sports Physiology and Performance, 18(2), 112–122. https://doi.org/10.1123/ijspp.2022-0302
  14. García-Pinillos, F., Cámara-Pérez, J. C., Soto-Hermoso, V. M., & Latorre-Román, P. Á. (2017). A High Intensity Interval Training (HIIT)-Based Running Plan Improves Athletic Performance by Improving Muscle Power. Journal of Strength and Conditioning Research, 31(1), 146–153. https://doi.org/10.1519/JSC.0000000000001473
  15. Gastin, P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports Medicine, 31(10), 725–741. https://doi.org/10.2165/00007256-200131100-00003
  16. Gibbs KD, Loveless J, Crane S. A guide to using technological applications to facilitate systematic reviews. Worldviews Evid Based Nurs. 2022 Dec;19(6):442-449. doi: 10.1111/wvn.12611. Epub 2022 Nov 15. PMID: 36380454; PMCID: PMC11465921.
  17. Haller, N., Stöggl, T., Strepp, T., Blumkaitis, J., Schmuttermair, A. C., Kilzer, F., & Wiesinger, H.-P. (2022). High-Intensity Interval Training in elite athletes: A meta-analysis of effects on VO₂max. Medicine and Science in Sports and Exercise, 54(2022), 272. https://doi.org/10.1249/01.mss.0000878432.17738.98
  18. Hall, A. J., Aspe, R. R., Craig, T. P., Kavaliauskas, M., Babraj, J., & Swinton, P. A. (2023). The Effects of Sprint Interval Training on Physical Performance: A Systematic Review and Meta-Analysis. Journal of Strength & Conditioning Research, 37(2), 457–481. https://doi.org/10.1519/JSC.0000000000004257
  19. Hostrup, M., Lemminger, A. K., Stocks, B., Gonzalez-Franquesa, A., Larsen, J. K., Quesada, J. P., Thomassen, M., Weinert, B. T., Bangsbo, J., & Deshmukh, A. S. (2022). High-intensity interval training remodels the proteome and acetylome of human skeletal muscle. ELife, 11. https://doi.org/10.7554/eLife.69802
  20. Hung, C.-H., Su, C.-H., & Wang, D. (2025). The Role of High-Intensity Interval Training (HIIT) in Neuromuscular Adaptations: Implications for Strength and Power Development—A Review. Life, 15(4), 657. https://doi.org/10.3390/life15040657
  21. ilanović, Z., et al. (2023). High-load HIIT improves explosive strength and sprint performance in trained athletes. Biology of Sport, 40(2), 435–443.
  22. Ito, G., Feeley, M., Sawai, T., Nakata, H., Otsuki, S., Nakahara, H., & Miyamoto, T. (2024). High-intensity interval training improves respiratory and cardiovascular adjustments before and after initiation of exercise. Frontiers in Physiology, 15. https://doi.org/10.3389/fphys.2024.1227316
  23. Jensen, L., Bangsbo, J., & Hellsten, Y. (2004). Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. The Journal of Physiology, 557(2), 571–582. https://doi.org/10.1113/jphysiol.2003.057711
  24. Ko, J.-M., So, W.-Y., & Park, S.-E. (2025). Narrative Review of High-Intensity Interval Training: Positive Impacts on Cardiovascular Health and Disease Prevention. Journal of Cardiovascular Development and Disease, 12(4), 158. https://doi.org/10.3390/jcdd12040158
  25. Laidi, A., Melki, H., Djerioui, M., & Salem, L. (2025). Experimental Study on How 10 weeks of Combined Height Interval Intensity Training (HIIT) and Plyometric Training Can Affect Explosive Power in U17 Football Players. Слобожанський Науково-Спортивний Вісник, 29(1), 3–13. https://doi.org/10.15391/snsv.2025-1.01
  26. Li, J., Li, Y., Atakan, M. M., Kuang, J., Hu, Y., Bishop, D. J., & Yan, X. (2020). The Molecular Adaptive Responses of Skeletal Muscle to High-Intensity Exercise/Training and Hypoxia. Antioxidants, 9(8), 656. https://doi.org/10.3390/antiox9080656
  27. Llanos-Lagos, C., Ramirez-Campillo, R., Moran, J., & Sáez de Villarreal, E. (2024). Effect of Strength Training Programs in Middle- and Long-Distance R
  28. unners’ Economy at Different Running Speeds: A Systematic Review with Meta-analysis. Sports Medicine, 54(4), 895–932. https://doi.org/10.1007/s40279-023-01978-y
  29. Liu Y, Abdullah BB, Abu Saad HB. Effects of high-intensity interval training on strength, speed, and endurance performance among racket sports players: A systematic review. PLoS One. 2024 Jan 5;19(1):e0295362.doi:10.1371/journal.pone.0295362. PMID: 38180964; PMCID: PMC10769056.
  30. Maharani, Sukendro, & Yanto, A. H. (2025). Pengaruh Latihan High Intensity Interval Training (HIIT) terhadap PeningkatanVO2MAX pada Atlet Bulutangkis PB Tunas Jaya Kasturi Kota Jambi. SPRINTER: Jurnal Ilmu Olahraga, 6(1), 121–126. https://doi.org/10.46838/spr.v6i1.708
  31. Milanović, Z., Sporiš, G., & Weston, M. (2015). Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials. Sports Medicine, 45(10), 1469–1481. https://doi.org/10.1007/s40279-015-0365-0
  32. Mølmen, K. S., Almquist, N. W., & Skattebo, Ø. (2025). Effects of Exercise Training on Mitochondrial and Capillary Growth in Human Skeletal Muscle: A Systematic Review and Meta-Regression. Sports Medicine, 55(1), 115–144. https://doi.org/10.1007/s40279-024-02120-2
  33. Nature, S. (2024). Effects of high-intensity training on jumping performance among athletes: A meta-analysis. Scientific Reports. https://doi.org/10.1038/s41598-024-83161-5
  34. Pérez-Castilla, A., García-Pinillos, F., Miras-Moreno, S., Ramirez-Campillo, R., García-Ramos, A., & Ruiz-Alias, S. A. (2023). Selective Effect of Different High-Intensity Running Protocols on Resistance Training Performance. Journal of Strength & Conditioning Research, 37(6), e369–e375. https://doi.org/10.1519/JSC.0000000000004392
  35. Pereira PE, Esteves G, Carvas N, Azevedo PH. Effects of high-intensity interval and moderate-intensity continuous training on the anaerobic threshold of highly trained athletes in endurance sports: a systematic review with meta-analysis. J Sports Med Phys Fitness. 2024 Sep;64(9):898-907. doi: 10.23736/S0022-4707.24.15855-0. Epub 2024 Jun 6. PMID: 38842374
  36. Pierros, T., & Spyrou, K. (2023). Effects of high-intensity interval training versus sprint interval training during the second wave of COVID-19 lockdown on soccer players. Apunts Sports Medicine, 58(218), 100414. https://doi.org/10.1016/j.apunsm.2023.100414
  37. Rønnestad, B. R., et al. (2023). Sprint interval training improves anaerobic performance in trained cyclists. European Journal of Sport Science, 23(2), 200–208.
  38. Selcuk, A. A. (2019). A Guide for Systematic Reviews: PRISMA. Turkish Archives of Otorhinolaryngology, 57(1), 57–58. https://doi.org/10.5152/tao.2019.4058
  39. Seo, M.-W., Lee, J.-M., Jung, H. C., Jung, S. W., & Song, J. K. (2019). Effects of Various Work-to-rest Ratios during High-intensity Interval Training on Athletic Performance in Adolescents. International Journal of Sports Medicine, 40(08), 503–510. https://doi.org/10.1055/a-0927-6884
  40. Soslu, R., Uysal, A., Devrilmez, M., Can Çuvalcıoğlu, İ., Doğan, A. A., Karaburgu, S., & Taş, M. (2023). Effects of high-intensity interval training program on pituartry function in basketball players: a randomized controlled trial. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1219780
  41. Stankovic, M., Djordjevic, D., Trajkovic, N., & Milanovic, Z. (2023). Effects of High-Intensity Interval Training (HIIT) on Physical Performance in Female Team Sports: A Systematic Review. Sports Medicine - Open, 9(1), 78. https://doi.org/10.1186/s40798-023-00623-2
  42. Stanković, M., Trajković, N., Mačak, D., Đorđević, D., Lazić, A., & Milanović, Z. (2024). Effects of linear and change of direction high-intensity interval training on physical performance of elite female soccer players. Biology of Sport, 41(4), 31–39. https://doi.org/10.5114/biolsport.2024.134761
  43. Stöggl, T. L., Strepp, T., Wiesinger, H.-P., & Haller, N. (2024). A training goal-oriented categorization model of High-Intensity Interval Training. Frontiers in Physiology, 15, Article 1414307. https://doi.org/10.3389/fphys.2024.1414307
  44. Tian, S., Mou, H., Fang, Q., Zhang, X., Meng, F., & Qiu, F. (2021). Comparison of the Sustainability Effects of High-Intensity Interval Exercise and Moderate-Intensity Continuous Exercise on Cognitive Flexibility. International Journal of Environmental Research and Public Health, 18(18), 9631. https://doi.org/10.3390/ijerph18189631
  45. Wang, X., Soh, K. G., Samsudin, S., Li, L., Liu, C., Sun, M., & Ma, S. (2025). Effects of high-intensity training on jumping performance among athletes: a systematic review with meta-analysis. Scientific Reports, 15(1), 1763. https://doi.org/10.1038/s41598-024-83161-5
  46. Wang, Z., & Wang, J. (2024). The effects of high-intensity interval training versus moderate-intensity continuous training on athletes’ aerobic endurance performance parameters. European Journal of Applied Physiology, 124(8), 2235–2249. https://doi.org/10.1007/s00421-024-05532-0Akter, S., Rahman, M. M., Rouyard, T., Aktar, S., Nsashiyi, R. S., & Nakamura, R. (2024). A systematic review and network meta-analysis of population-level interventions to tackle smoking behaviour. Nature Human Behaviour, 8(12), 2367–2391. https://doi.org/10.1038/s41562-024-02002-7
  47. Aslam, S., Habyarimana, J. D. D., & Bin, S. Y. (2025). Neuromuscular adaptations to resistance training in elite versus recreational athletes. Frontiers in Physiology, 16. https://doi.org/10.3389/fphys.2025.1598149
  48. Barbieri, A., Fuk, A., Gallo, G., Gotti, D., Meloni, A., La Torre, A., Filipas, L., & Codella, R. (2024). Cardiorespiratory and metabolic consequences of detraining in endurance athletes. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1334766
  49. Batterson, P. M., McGowan, E. M., Stierwalt, H. D., Ehrlicher, S. E., Newsom, S. A., & Robinson, M. M. (2023). Two weeks of high-intensity interval training increases skeletal muscle mitochondrial respiration via complex-specific remodeling in sedentary humans. Journal of Applied Physiology, 134(2), 339–355. https://doi.org/10.1152/japplphysiol.00467.2022
  50. Benhammou, S., Clemente, F. M., Mourot, L., & Belkadi, A. (2025). Physiological and Biomechanical Responses Induced by a Continuous Test and an Intermittent Test in Middle-Distance Runners. International Journal of Sports Physiology and Performance, 20(5), 638–643. https://doi.org/10.1123/ijspp.2024-0350
  51. Bharlaman, M. B. F., Kusuma, I. D. M. A. W., Kusnanik, N. W., Prianto, D. A., & Pranoto, A. (2024). Physiological adaptations in small-side games combined with speed-endurance training: analyzing heart rate and rate of perceived exertion. Pedagogy of Physical Culture and Sports, 28(5), 407–414. https://doi.org/10.15561/26649837.2024.0509
  52. Bishop, D. J., Botella, J., Genders, A. J., Lee, M. J.-C., Saner, N. J., Kuang, J., Yan, X., & Granata, C. (2019). High-Intensity Exercise and Mitochondrial Biogenesis: Current Controversies and Future Research Directions. Physiology, 34(1), 56–70. https://doi.org/10.1152/physiol.00038.2018
  53. BMC Sports Science, Medicine and Rehabilitation. (2023). Home-based high-intensity interval training improves cardiorespiratory fitness: A systematic review and meta-analysis, 15, Article 166. https://doi.org/10.1186/s13102-023-00777-2
  54. Čaprić, I., Stanković, M., Bojić, I., Katanić, B., Jelaska, I., Pezelj, L., Masanovic, B., Stefanica, V., & Govindasamy, K. (2025). Effects of Different Types of High-Intensity Interval Training (HIIT) on Physical Performance in Female Basketball Players—A Systematic Review. Life, 15(8), 1180. https://doi.org/10.3390/life15081180
  55. Diahputri, N. M. N., & Sundari, L. P. R. (2022). Respom Fisiologis dan Biomolekuler Pada High Intensity Interval Training ( HIIT ). Jurnal Kesehatan Terpadu, 6(2), 79–84. https://jurnal.undhirabali.ac.id/index.php/kesehatan/article/view/2385
  56. Eather, N., Stansfield, K., Babic, M., & Lubans, D. R. (2024). The Development and Evaluation of Netball-Specific High-Intensity Interval Training Sessions: The Netball-HIIT Study. Sports, 12(1), 34. https://doi.org/10.3390/sports12010034
  57. Evangelista, A. L., de Camargo, J. B. B., Rica, R. L., Carnevali Júnior, L. C., Mallett, G. S., Bullo, V., Bergamin, M., Gobbo, S., & Bocalini, D. S. (2025). Different whole body HIIT protocols do not promote different muscle thickness and functional adaptations among healthy physically active subjects. Frontiers in Sports and Active Living, 6. https://doi.org/10.3389/fspor.2024.1513030
  58. Galán-Rioja, M. Á., Gonzalez-Ravé, J. M., González-Mohíno, F., & Seiler, S. (2023). Training Periodization, Intensity Distribution, and Volume in Trained Cyclists: A Systematic Review. International Journal of Sports Physiology and Performance, 18(2), 112–122. https://doi.org/10.1123/ijspp.2022-0302
  59. García-Pinillos, F., Cámara-Pérez, J. C., Soto-Hermoso, V. M., & Latorre-Román, P. Á. (2017). A High Intensity Interval Training (HIIT)-Based Running Plan Improves Athletic Performance by Improving Muscle Power. Journal of Strength and Conditioning Research, 31(1), 146–153. https://doi.org/10.1519/JSC.0000000000001473
  60. Gastin, P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports Medicine, 31(10), 725–741. https://doi.org/10.2165/00007256-200131100-00003
  61. Gibbs KD, Loveless J, Crane S. A guide to using technological applications to facilitate systematic reviews. Worldviews Evid Based Nurs. 2022 Dec;19(6):442-449. doi: 10.1111/wvn.12611. Epub 2022 Nov 15. PMID: 36380454; PMCID: PMC11465921.
  62. Haller, N., Stöggl, T., Strepp, T., Blumkaitis, J., Schmuttermair, A. C., Kilzer, F., & Wiesinger, H.-P. (2022). High-Intensity Interval Training in elite athletes: A meta-analysis of effects on VO₂max. Medicine and Science in Sports and Exercise, 54(2022), 272. https://doi.org/10.1249/01.mss.0000878432.17738.98
  63. Hall, A. J., Aspe, R. R., Craig, T. P., Kavaliauskas, M., Babraj, J., & Swinton, P. A. (2023). The Effects of Sprint Interval Training on Physical Performance: A Systematic Review and Meta-Analysis. Journal of Strength & Conditioning Research, 37(2), 457–481. https://doi.org/10.1519/JSC.0000000000004257
  64. Hostrup, M., Lemminger, A. K., Stocks, B., Gonzalez-Franquesa, A., Larsen, J. K., Quesada, J. P., Thomassen, M., Weinert, B. T., Bangsbo, J., & Deshmukh, A. S. (2022). High-intensity interval training remodels the proteome and acetylome of human skeletal muscle. ELife, 11. https://doi.org/10.7554/eLife.69802
  65. Hung, C.-H., Su, C.-H., & Wang, D. (2025). The Role of High-Intensity Interval Training (HIIT) in Neuromuscular Adaptations: Implications for Strength and Power Development—A Review. Life, 15(4), 657. https://doi.org/10.3390/life15040657
  66. ilanović, Z., et al. (2023). High-load HIIT improves explosive strength and sprint performance in trained athletes. Biology of Sport, 40(2), 435–443.
  67. Ito, G., Feeley, M., Sawai, T., Nakata, H., Otsuki, S., Nakahara, H., & Miyamoto, T. (2024). High-intensity interval training improves respiratory and cardiovascular adjustments before and after initiation of exercise. Frontiers in Physiology, 15. https://doi.org/10.3389/fphys.2024.1227316
  68. Jensen, L., Bangsbo, J., & Hellsten, Y. (2004). Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. The Journal of Physiology, 557(2), 571–582. https://doi.org/10.1113/jphysiol.2003.057711
  69. Ko, J.-M., So, W.-Y., & Park, S.-E. (2025). Narrative Review of High-Intensity Interval Training: Positive Impacts on Cardiovascular Health and Disease Prevention. Journal of Cardiovascular Development and Disease, 12(4), 158. https://doi.org/10.3390/jcdd12040158
  70. Laidi, A., Melki, H., Djerioui, M., & Salem, L. (2025). Experimental Study on How 10 weeks of Combined Height Interval Intensity Training (HIIT) and Plyometric Training Can Affect Explosive Power in U17 Football Players. Слобожанський Науково-Спортивний Вісник, 29(1), 3–13. https://doi.org/10.15391/snsv.2025-1.01
  71. Li, J., Li, Y., Atakan, M. M., Kuang, J., Hu, Y., Bishop, D. J., & Yan, X. (2020). The Molecular Adaptive Responses of Skeletal Muscle to High-Intensity Exercise/Training and Hypoxia. Antioxidants, 9(8), 656. https://doi.org/10.3390/antiox9080656
  72. Llanos-Lagos, C., Ramirez-Campillo, R., Moran, J., & Sáez de Villarreal, E. (2024). Effect of Strength Training Programs in Middle- and Long-Distance R
  73. unners’ Economy at Different Running Speeds: A Systematic Review with Meta-analysis. Sports Medicine, 54(4), 895–932. https://doi.org/10.1007/s40279-023-01978-y
  74. Liu Y, Abdullah BB, Abu Saad HB. Effects of high-intensity interval training on strength, speed, and endurance performance among racket sports players: A systematic review. PLoS One. 2024 Jan 5;19(1):e0295362.doi:10.1371/journal.pone.0295362. PMID: 38180964; PMCID: PMC10769056.
  75. Maharani, Sukendro, & Yanto, A. H. (2025). Pengaruh Latihan High Intensity Interval Training (HIIT) terhadap PeningkatanVO2MAX pada Atlet Bulutangkis PB Tunas Jaya Kasturi Kota Jambi. SPRINTER: Jurnal Ilmu Olahraga, 6(1), 121–126. https://doi.org/10.46838/spr.v6i1.708
  76. Milanović, Z., Sporiš, G., & Weston, M. (2015). Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials. Sports Medicine, 45(10), 1469–1481. https://doi.org/10.1007/s40279-015-0365-0
  77. Mølmen, K. S., Almquist, N. W., & Skattebo, Ø. (2025). Effects of Exercise Training on Mitochondrial and Capillary Growth in Human Skeletal Muscle: A Systematic Review and Meta-Regression. Sports Medicine, 55(1), 115–144. https://doi.org/10.1007/s40279-024-02120-2
  78. Nature, S. (2024). Effects of high-intensity training on jumping performance among athletes: A meta-analysis. Scientific Reports. https://doi.org/10.1038/s41598-024-83161-5
  79. Pérez-Castilla, A., García-Pinillos, F., Miras-Moreno, S., Ramirez-Campillo, R., García-Ramos, A., & Ruiz-Alias, S. A. (2023). Selective Effect of Different High-Intensity Running Protocols on Resistance Training Performance. Journal of Strength & Conditioning Research, 37(6), e369–e375. https://doi.org/10.1519/JSC.0000000000004392
  80. Pereira PE, Esteves G, Carvas N, Azevedo PH. Effects of high-intensity interval and moderate-intensity continuous training on the anaerobic threshold of highly trained athletes in endurance sports: a systematic review with meta-analysis. J Sports Med Phys Fitness. 2024 Sep;64(9):898-907. doi: 10.23736/S0022-4707.24.15855-0. Epub 2024 Jun 6. PMID: 38842374
  81. Pierros, T., & Spyrou, K. (2023). Effects of high-intensity interval training versus sprint interval training during the second wave of COVID-19 lockdown on soccer players. Apunts Sports Medicine, 58(218), 100414. https://doi.org/10.1016/j.apunsm.2023.100414
  82. Rønnestad, B. R., et al. (2023). Sprint interval training improves anaerobic performance in trained cyclists. European Journal of Sport Science, 23(2), 200–208.
  83. Selcuk, A. A. (2019). A Guide for Systematic Reviews: PRISMA. Turkish Archives of Otorhinolaryngology, 57(1), 57–58. https://doi.org/10.5152/tao.2019.4058
  84. Seo, M.-W., Lee, J.-M., Jung, H. C., Jung, S. W., & Song, J. K. (2019). Effects of Various Work-to-rest Ratios during High-intensity Interval Training on Athletic Performance in Adolescents. International Journal of Sports Medicine, 40(08), 503–510. https://doi.org/10.1055/a-0927-6884
  85. Soslu, R., Uysal, A., Devrilmez, M., Can Çuvalcıoğlu, İ., Doğan, A. A., Karaburgu, S., & Taş, M. (2023). Effects of high-intensity interval training program on pituartry function in basketball players: a randomized controlled trial. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1219780
  86. Stankovic, M., Djordjevic, D., Trajkovic, N., & Milanovic, Z. (2023). Effects of High-Intensity Interval Training (HIIT) on Physical Performance in Female Team Sports: A Systematic Review. Sports Medicine - Open, 9(1), 78. https://doi.org/10.1186/s40798-023-00623-2
  87. Stanković, M., Trajković, N., Mačak, D., Đorđević, D., Lazić, A., & Milanović, Z. (2024). Effects of linear and change of direction high-intensity interval training on physical performance of elite female soccer players. Biology of Sport, 41(4), 31–39. https://doi.org/10.5114/biolsport.2024.134761
  88. Stöggl, T. L., Strepp, T., Wiesinger, H.-P., & Haller, N. (2024). A training goal-oriented categorization model of High-Intensity Interval Training. Frontiers in Physiology, 15, Article 1414307. https://doi.org/10.3389/fphys.2024.1414307
  89. Tian, S., Mou, H., Fang, Q., Zhang, X., Meng, F., & Qiu, F. (2021). Comparison of the Sustainability Effects of High-Intensity Interval Exercise and Moderate-Intensity Continuous Exercise on Cognitive Flexibility. International Journal of Environmental Research and Public Health, 18(18), 9631. https://doi.org/10.3390/ijerph18189631
  90. Wang, X., Soh, K. G., Samsudin, S., Li, L., Liu, C., Sun, M., & Ma, S. (2025). Effects of high-intensity training on jumping performance among athletes: a systematic review with meta-analysis. Scientific Reports, 15(1), 1763. https://doi.org/10.1038/s41598-024-83161-5
  91. Wang, Z., & Wang, J. (2024). The effects of high-intensity interval training versus moderate-intensity continuous training on athletes’ aerobic endurance performance parameters. European Journal of Applied Physiology, 124(8), 2235–2249. https://doi.org/10.1007/s00421-024-05532-0
  92. Wiesinger, H.-P., Hopkins, W. G., Haller, N., Blumkaitis, J., Strepp, T., & Stöggl, T. L. (2024). Meta-analyses of the effects of high-intensity interval training in elite athletes — part II: relationships between the mean effects on various performance measures. Frontiers in Physiology, 15. https://doi.org/10.3389/fphys.2024.1486570
  93. Yuan, Y., Soh, K. G., Qi, F., Bashir, M., & Zhao, N. (2024). Effects of high-intensity interval training on selected indicators of physical fitness among male team-sport athletes: A systematic review and meta-analysis. PLOS ONE, 19(11), e0310955. https://doi.org/10.1371/journal.pone.0310955
  94. Yudhistira, D., Suherman, W. S., Wiratama, A., Wijaya, U. K., Paryadi, P., Faruk, M., Hadi, H., Siregar, S., Jufrianis, J., & Pratama, K. W. (2021). Content Validity of the HIIT Training Program in Special Preparations to Improve the Dominant Biomotor Components of Kumite Athletes. International Journal of Human Movement and Sports Sciences, 9(5), 1051–1057. https://doi.org/10.13189/saj.2021.090527
  95. Yue, T., Su, H., Cheng, M.-Y., Wang, Y., Bao, K., & Qi, F. (2025). High-Intensity Interval Training Improves Inhibitory Control and Working Memory in Healthy Young Adults. Journal of Human Kinetics. https://doi.org/10.5114/jhk/194498
  96. Zhang, K., Jan, Y.-K., Liu, Y., Zhao, T., Zhang, L., Liu, R., Liu, J., & Cao, C. (2022). Exercise Intensity and Brain Plasticity: What’s the Difference of Brain Structural and Functional Plasticity Characteristics Between Elite Aerobic and Anaerobic Athletes? Frontiers in Human Neuroscience, 16. https://doi.org/10.3389/fnhum.2022.757522
  97. Zhang, Z., Xie, L., Ji, H., Chen, L., Gao, C., He, J., Lu, M., Yang, Q., Sun, J., & Li, D. (2024). Effects of different work-to-rest ratios of high-intensity interval training on physical performance and physiological responses in male college judo athletes. Journal of Exercise Science & Fitness, 22(3), 245–253. https://doi.org/10.1016/j.jesf.2024.03.009