Main Article Content

Abstract

Metode akustik dapat digunakan dalam memperkirakan kelimpahan ikan. Metode ini membutuhkan informasi Target Strength (TS) untuk setiap spesies target. TS merupakan parameter penting sebagai faktor skala dalam pendugaan stok secara akustik. Penelitian ini bertujuan menganalisis karakteristik TS ikan selar bentong (Selar boops) dan mencari rumusan hubungan panjang baku dan panjang gelembung renang ikan selar bentong (Selar boops) terhadap nilai TS pada frekuensi transmisi 38 kHz. Pengukuran dilakukan secara terkontrol dimana ikan ditempatkan di bawah transduser dengan metode tethered menggunakan echosounder Simrad EK-60 pada frekeuensi 38 kHz. Hasil penelitian diperoleh nilai TS ikan selar bentong (Selar boops) berukuran panjang baku 16 cm sampai 20 cm menyebar pada kisaran –51,62 dB sampai dengan -39,03 dB, dengan nilai rata – rata -46,67 dB. Model hubungan TS terhadap panjang baku ikan selar bentong yaitu TS = 30,1 Log SL -84,49. Model hubungan TS terhadap panjang gelembung renang yaitu TS = 20,32 Log SB -62,34.

ACOUSTIC CONTROLLED MEASUREMENT OF TARGET STRENGTH OF SELAR BENTONG FISH (SELAR BOOPS) IN TIKUS ISLAND WATER, BENGKULU CITY. Acoustic methods can be used to estimate fish abundance. This method requires Target Strength (TS) information for each target species. TS is an important parameter as a scale factor in acoustic estimation of stock. This study aims to analyze the TS characteristics of Selar bentong fish (Selar boops) and look for the formulation of the relationship between the standard length and length of the swim bladder in Selar bentong fish (Selar boops) to the TS value at the transmission frequency of 38 kHz. Measurements were carried out in a controlled manner where the fish were placed under the transducer with a tethered method using the Simrad EK-60 echosounder at a frequency of 38 kHz. The results showed that the TS value of Selar bentong (Selar boops) with a standard length of 16 cm to 20 cm spread over the range of -51.62 dB to -39.03 dB, with an average value of -46.67 dB. The relationship model of TS to the standard length of Selar bentong fish was TS = 30.1 Log SL -84.49. The relationship model of TS to swim bladder length was TS = 20.32 Log SB -62.34.

 

 

Article Details

Author Biography

Deddy Bakhtiar, Program Studi Ilmu Kelautan, Fakultas Pertanian, Universitas Bengkulu, Bengkulu

Department of Marine Science University of Bengkulu
How to Cite
Bakhtiar, D., Nadia, L., Zamdial, Z., & Anggoro, A. (2020). PENGUKURAN AKUSTIK TARGET STRENGTH IKAN SELAR BENTONG (Selar boops) SECARA TERKONTROL DI PERAIRAN PULAU TIKUS KOTA BENGKULU. JURNAL ENGGANO, 5(2), 290–301. https://doi.org/10.31186/jenggano.5.2.290-301

References

  1. Abdussamad E.M., Rohit, K. P. P. Koya, O. M. M. J. H. Mohamed dan K. Jeyabalan. 2013. Carangids (Family: Carangidae) in the seas around Indian subcontinent with description of macro-taxonomic characters for the field identification of genera and species.Indian J. Fish., 60(2) : 21-36.
  2. Akbar H., Jailani, I. Suyatna, Destilawaty, S. A. Putra, I. Ambalika, 2018. Check list of the marine commercial and reef fishes of Belitung Timur, Bangka Belitung Islands, Indonesia Aceh Journal of Animal Science 3 (2): 69-83. DOI: 10.13170/ajas.3.2.12220.
  3. Benoit-Bird KJ, Whitlow WLA, Christopher DK, Christopher T. 2003. Acoustic backscattering by deepwater fish measured in situ from a manned submersible. Deep-Sea Research I, 50: 221–229.
  4. Boswell KM, Kaller MD, Cowan JH Jr, Wilson CA. 2008. Evaluation of Target Strength–fish length equation choices for estimating estuarine fish biomass. Hydrobiologia. 610:113–123.
  5. Cervirgon F, R. Cipriani, W. Fischer, L. Garibaldi, M. Hendrickx, A.J. Lemus, R. Marquez, J.M. Piutiers, G. Robaina & B. Rodriguez. “Sheets FAO species identification for fishery purpose. Field guide to the commercial marine and brackish species aquas of the morthern coast of South America”. FAO, Roma. 513p, 1992.
  6. Dawson JJ, Karp WA. 1990. In situ measures of Target Strength variablelity of individual fish. Rapp. P.-V. Reun. Cons. Int. Explor. Mer. 189:264-273.
  7. Foote KG, Knudsen HP, Vestnes GD, MacLennan N, Simmonds EJ, 1987. Calibration of acoustic instruments for fish density estimation: a practical guide. ICES Coop. Res. Rep. 144, 1–69.
  8. Frouzova J, Kubecka J, Balk H, Frouz J. 2005. Target Strength of some Europeanfish species and its dependence on fish body parameters. Fish Res. 75: 86–96.
  9. Hazen EL, Horne JK. 2003. A method for evaluating the effects of biological factors on fish Target Strength. ICES J Mar Sci. 60:555–562.
  10. Horne JK, P. D. Walline, and J. M. Jech. 2000. Comparing acoustic model predictions to in situ backscatter measurements of fish with dual-chambered swimbladders. J. Fish Bio., 57:1105–1121. doi:10.1006/jfbi.2000.1372.
  11. Iwatsuki, Y., M.I. Djawad, A.I. Burhanuddin, H. Motomura, K. Hidaka. 2000. A preliminary list of the epipelagic and inshore fishes of Makassar (=Ujung Pandang), South Sulawesi, Indonesia, collected mainly from fish markets between 23-27 January 2000, with notes on fishery catch characteristics. Bulletin of the Faculty of Agriculture, Miyaxaki University, 41(1-2): 95-114.
  12. Kang D, Cho S, Lee C, Myoung JG, Na J. 2009. Ex situ target-strength measurements of Japanese anchovy (Engraulis japonicus) in the coastal Northwest Pacific. ICES J Mar Sci. 66:1219–1224.
  13. Love RH. 1969. Maximum Side-Aspect Target Strength of an Individual Fish. J Acoust. Soc. Am, 46(3):746-752.
  14. Love RH. 1971. Dorsal-aspect Target Strength of an individual fish. J Acoust Soc Am. 49(3): 816–823.
  15. MacLennan DN. 1990. Acoustical measurement of fish abundance. J Acoust Soc Am, 87: 1–15.
  16. McClatchie S, Alsop J, Coombs RF. 1996. A re-evaluation of relationshipsbetween fish size, acoustic frequency, and Target Strength. ICES J Mar Sci. 53:780–791.
  17. McClatchie S, Macaulay GJ, Coombs RF. 2003. A requiem for the use of 20 log10 Length for acoustic Target Strength with special reference to deep-sea fishes. ICES J Mar Sci. 60:419–428.
  18. Medwin H dan Clay CS. 1998. Applied Ocean Acoustics: Fundamentals of Acoustical Oceanography. Academic Press, New York. 712 pp.
  19. Mitson, R. B. 1983. Fisheries Sonar. Fishing News Book. England.
  20. Ona E. 2003. An expanded target-strength relationship for herring. ICES J Mar Sci. 60:493–499.
  21. Ona, E. 1990. Physiological factors causing natural variations in acoustic Target Strength of fish. Journal of the Marine Biological Association of the United Kingdom, 70: 107–127.
  22. Ona, E., Svellingen, I., and Fosseidengen, J. E. 2001. Target Strength of herring during vertical excursions. ICES Fisheries Acoustic Science and Technology Working Group (FAST), Seattle, April, 2001: 1–16.
  23. Saranga R., S. Simau, J. Kalesaran, M. Z. Arifin. 2019. Ukuran Pertama Kali Tertangkap, Ukuran Pertama Kali Matang Gonad dan Status Pengusahaan Selar boops di Perairan Bitung. Journal of Fisheries and Marine Research 3 (1 ) : 67-74.
  24. Sobradillo B., G. Boyra, U. Martinez, P. Carrera, M. Peña & X. Irigoien. 2019. Target Strength and swimbladder morphology of Mueller’s pearlside (Maurolicus muelleri). Scientific Reports 9:17311. https://doi.org/10.1038/s41598-019-53819-6.
  25. Susilowati I. 2013. Prospek Pengelolaan Sumber Daya Perikanan Berbasis Ekosistem: Studi Empiris Di Karimunjawa. J. Eko Pemb 14 (1) : 16-37.
  26. Zare P, Kasatkina SM, Shibaev SV, Fazli H. 2017. In situ acoustic Target Strength of anchovy kilka (Clupeonella engrauliformis) in the Caspian Sea (Iran). Fish Res. 186 : 311–318.