Main Article Content

Abstract

GLORYS12V1 merupakan produk dari model numerik 3 dimensi fisika oseanografi dengan resolusi horizontal 1/12o x 1/12o (sekitar 8 km x 8 km) dan 50-layer terhadap kedalaman. Arus laut merupakan salah satu parameter dinamika oseanografi yang berhasil disimulasikan dengan baik oleh model tersebut. Arus laut terhadap kedalaman dapat digunakan untuk kajian tranpor volume. Dengan menggunakan GLORYS12V1 dapat dikaji arus permukaan dan transpor volume rata-rata bulanan di perairan sekitar Pulau Enggano dan sekitarnya selama tahun 2013. Kecepatan arus permukaan bervariasi antara 0-0,75 m/detik. Sementara itu, untuk arus terhadap kedalaman berkisar antara 0-1 m/detik dengan arah dan besar arus bervariasi terhadap kedalaman. Bahkan untuk bulan-bulan tertentu antara permukaan hingga kedalaman 50 m arah nya berbeda dengan kedalaman >50 m hingga dasar. Arus terhadap kedalaman di barat laut dengan tenggara Pulau Enggano memiliki perbedaan arah pada bulan-bulan musim peralihan seperti April dan November. Sementara untuk besarnya relatif sama yaitu pada kisaran 0-1 m/detik. Kemudian transpor volume terhadap kedalaman yang melalui perairan antara Pulau Enggano dengan daratan Sumatra berkisar antara -2 Sv sampai 2 Sv, (1 Sv=106 m3/detik). Nilai positif (negatif) menunjukan arah transport ke barat laut (tenggara). Transpor maksimum berada pada kedalaman 100-700 m pada bulan April-Mei dan Oktober-November menuju barat laut sedangkan bulan Februari-Maret dan Juni-Juli menuju tenggara. Perbedaan arah transpor terhadap kedalaman terjadi pada bulan Februari-Maret (musim barat) dan Juni-Juli (musim timur). Sedangkan pada musim peralihan I dan peralihan II transpor terhadap kedalaman arahnya cenderung seragam yaitu menuju tenggara. Korelasi antara transpor volume dengan kecepatan angin lokal menunjukan kuat searah dari permukaan hingga kedalaman 20 m. Selanjutnya, dari kedalaman 20-300 m korelasi tranpor volume dengan angin berlawanan. Terakhir, dari kedalaman 300 m hingga dasar korelasinya searah namun tidak signifikan. Hal tersebut mengindikasikan bahwa kecepatan arus dan transpor volume di Perairan Pulau Enggano dan sekitarnya dipengaruhi oleh kecepatan angin lokal untuk permukaan - 20 m dan pengaruh regional untuk kedalaman > 20 m.

 

KATA KUNCI: Perairan Pulau Enggano, Arus Laut, Transpor Volume

ABSTRACT

GLORYS12V1 is a product of a 3-dimensional numerical model of oceanographic physics with a horizontal resolution of 1/12o x 1/12o (approximately 8 km x 8 km) and 50 layers to depth. Ocean currents are one of the parameters of oceanographic dynamics which the model has successfully simulated. Ocean currents to depth can be used for volume transport studies. Thus, by using GLORYS12V1, it is possible to study the average monthly surface currents and transport volumes in the waters around Enggano Island and its surroundings during 2013. The surface current velocity varies between 0-0.75 m/s. Meanwhile, current with depth ranged from 0-1 m/s with the direction and magnitude of the currents vary with depth. Even for certain months, the direction is different between the surface to a depth of 50 m, with a depth of > 50 m to the bottom. Currents to deep in the northwest and southeast of Enggano Island have different directions in the transitional season months, such as April and November. Meanwhile, the magnitude is relatively the same, namely in the range of 0-1 m/s. Then the transport volume to depth through the waters between Enggano Island and mainland Sumatra ranges from -2 Sv to 2 Sv, (1 Sv=106 m3/s). A positive (negative) value indicates the direction of transport to the northwest (southeast). Maximum transport is at a depth of 100-700 m in April-May and October-November towards the northwest while February-March and June-July towards the southeast. The difference in transport direction with depth occurs in February-March (west season) and June-July (eastern season). Meanwhile, in transition seasons I and II, the direction of transport towards depth tends to be uniform, namely towards the southeast. The correlation between volume transport and local wind speed shows the unidirectional strength from the surface to a depth of 20 m. Furthermore, from a depth of 20 m-300 m, the volume transport correlates with the opposite wind. Finally, from a depth of 300 m to the base, the correlation is unidirectional but not significant. This indicates that current velocity and volume transport in the waters of Enggano Island and its surroundings are influenced by local wind speeds for surface – 20 m and regional influences for depths > 20.

 

KEYWORDS : Enggano Island’s waters, Sea current, Volume transport

Article Details

How to Cite
Anwar, I. P., Wilopo, M. D., & Atmojo, A. T. (2021). ANALISIS KARAKTERISTIK ARUS LAUT DAN TRANSPOR MASSA AIR DI PERAIRAN SEKITAR PULAU ENGGANO DENGAN MENGGUNAKAN MODEL NUMERIK 3D. JURNAL ENGGANO, 6(2), 223–237. https://doi.org/10.31186/jenggano.6.2.%p

References

  1. Anwar, I.P., Putri, M.R., dan Setiawan, A. 2018. Variation of Volume Transport and Variability of Current in Karimata and Gaspar Straits during 2010-2014 based on Numerical Modeling. Jurnal Ilmu dan Teknologi Kelautan Tropis, 9(2), 771-780. https://doi.org/10.29244/jitkt.v9i2.19309
  2. Anwar, I.P., Putri, M.R., dan Setiawan, A. 2018. Ocean numerical model experiment on estimating the variation of volume and heat transport in Karimata strait. IOP Conf. Ser.: Earth Environ. Sci. 162 012001
  3. Arndt, J.E., Schenke, H.W., Jakobsson, M., Nitsche, F., Buys, G., Goleby, B., Rebesco, M., Bohoyo, F., Hong, J.K., Black, J., Greku, R., Udintsev, G., Barrios, F., Reynoso-Peralta, W., Morishita, T., Wigley, R. 2013. The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0 - A new bathymetric compilation covering circum Antarctic waters, Geophysical Research Letters, 40, p. 3111-3117, doi: 10.1002/grl.50413
  4. Auton, A. 2021. Red Blue Colormap (https://www.mathworks.com/matlabcentral/fileexchange/25536 red-blue-colormap), MATLAB Central File Exchange.
  5. Bernawis, L.I., Anwar, I.P., Bayhaqi, A., Wahyudi, A.J., Putri, M.R., dan Fadli, M. 2019. Estimation of Sea-Air CO2 Exchange at Simeulue Sea during Summer Asian Monsoon. Jurnal Ilmu dan Teknologi Kelautan Tropis, 11(3), 713-720. https://doi.org/10.29244/jitkt.v11i3.22662
  6. Cahyarini, S.Y., Pfeiffer, M., Reuning, L., Liebetrau, V., Dullo, W.-C., Takayanagi, H., Anwar, I.P., Utami, D.A., Garbe-Schönberg, D., Hendrizan, M., dan Eisenhauer, A. 2021. Modern and sub fossil corals suggest reduced temperature variability in the eastern pole of the Indian Ocean Dipole during the medieval climate anomaly. Sci Rep 11, 14952. https://doi.org/10.1038/s41598-021 94465-1
  7. Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Holm, E.V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., dan Vitart, F. 2011. The ERA Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137: 553–597. DOI:10.1002/qj.828
  8. Duan, Y., Liu, L., Han, G., Liu, H., Yu, W., Yang, G., Wang, H., Wang, H., Liu, Y., Zahid, dan Waheed, H. 2016. Anomalous behaviors of Wyrtki Jets in the equatorial Indian Ocean during 2013. Sci. Rep., 6, 1–7.
  9. Fang, G., Susanto, R.D., Wirasantosa, S., Qiao, F., Supangat, A., Fan, B., Wei, Z., Sulistiyo, B., dan Li, S. 2010. Volume, heat, and freshwater transports from the South China Sea to Indonesian seas in the boreal winter of 2007–2008, J. Geophys. Res., 115, C12020, doi:10.1029/2010JC006225.
  10. Gurvan, M., Bourdallé-Badie, R., Chanut, J., Clementi, E., Coward, A., Ethé, C., Lovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S., Rousset, C., Storkey, D., Vancoppenolle, M., Müeller, S., Nurser, G., Bell, M., dan Samson, G. 2019. NEMO ocean engine. In Notes du Pôle de modélisation de l'Institut Pierre-Simon Laplace (IPSL) (v4.0, Number 27). Zenodo. https://doi.org/10.5281/zenodo.3878122
  11. Lellouche, J.-M., Bourdalle-Badie, R., Greiner, E., Garric, G., Melet, A., Bricaud, C., Legalloudec, O., Hamon, M., Candela, T., Regnier, C., dan Drevillon, M. 2021. The Copernicus global 1/12° oceanic and sea ice reanalysis, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14961, https://doi.org/10.5194/egusphere-egu21 14961.
  12. MATLAB. 2017. version 9.2 (R2017a). Natick, Massachusetts: The MathWorks Inc.
  13. Ningsih, N. S., Sakina, S.L., Susanto, R.D., dan Hanifah, F. 2021. Simulated zonal current characteristics in the southeastern tropical Indian Ocean (SETIO), Ocean Sci., 17, 1115–1140, https://doi.org/10.5194/os-17-1115-2021.
  14. Pawlowicz, R., 2020. "M_Map: A mapping package for MATLAB", version 1.4m, [Computer software], available online at www.eoas.ubc.ca/~rich/map.html.
  15. Purwandana, A., Edikusmanto, Ismail, M.F.A., Surinati, D., Bayhaqi, A. Iskandar, M.R., Corvianawatie, C., Muhadjirin, Irianto, D. 2021. Current Structure and Preliminary Indication of Mentawaian-Jet in the Southeastern Mentawai Waters, Indonesia. IOP Conf. Ser.: Earth Environ. Sci. 789 012002.
  16. Schott, F.A., Xie, S.P., dan McCreary, J.P. 2009. Indian ocean circulation and climate variability. Rev. Geophys., 47, 1–46
  17. Timmermans, M.Z.M. 2015. Volume transports of the Wyrtki jets and their relationship to the Indian Ocean Dipole J. Geophys. Res. Ocean. 5302-5317.
  18. Tomczak, M. dan Godfrey, J.S. 1994. Regional Oceanography: An Introduction. Pergamon Press, Oxford.
  19. van der Mheen, M., van Sebille, E., dan Pattiaratchi, C. 2020. Beaching patterns of plastic debris along the Indian Ocean rim, Ocean Sci., 16, 1317–1336, https://doi.org/10.5194/os-16-1317-2020.
  20. Wyrtki, K. 1961. Physical Oceanography of the Southeast Asian waters. UC San Diego: Library – Scripps Digital Collection. Retrieved from https://escholarship.org/uc/item/49n9x3t4.