Main Article Content
Abstract
Exercise is commonly perceived as a pleasurable and healthy activity. However, it is classified as a complex activity that potentially enhances the formation of free radicals and oxidative stress. This study aims to analyze lipid peroxidation, as the biomarker of free radicals, in interval exercise. A total of 16 trained non-athlete male adolescents, aged 20-21 years old, with normal blood pressure, normal resting heart rate, and gave good level of physical fitness voluntarily participated in this study. The participants were randomly separated into two groups, namely the K1 (n=8, interval exercise with active resting medium intensity pedaling ergometer bike) and K2 (n=8, interval exercise with resting without pedaling the ergometer bike). The interval exercise was carried out at 60-70% HRmax intensity for 35 minutes. The blood sample for Malondialdehyde (MDA) level analysis, as the lipid peroxidation biomarker, was taken using Thiobarbituric acid reactive substances (TBARS). The blood samples were collected before and after the interval exercise. The obtained data were analyzed using the one-way ANOVA test with a 5% significance level. Our results suggest no significant different level of MDA, a lipid peroxidation biomarker, between the interval exercise with resting through medium intensity pedaling ergometer bike and the interval exercise with resting with no pedaling ergometer bike. However, the interval exercise resting through pedaling an ergometer bike presented relatively higher lipid peroxidation than the interval exercise resting without pedaling an ergometer bike. Therefore, following the free radical concept, interval exercise with resting through pedaling an ergometer bike is more beneficial than the exercise without pedaling an ergometer bike resting.
Keywords
Article Details
Copyright (c) 2022 Sugiharto, Desiana Merawati, Olivia Andiana, Adi Pranoto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in this journal agree with the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Brooks, G.A., 2020. Lactate as a fulcrum of metabolism. Redox Biology 35, 101454. https://doi.org/10.1016/j.redox.2020.101454
- Canals-Garzón, C., Guisado-Barrilao, R., Martínez-García, D., Chirosa-Ríos, I.J., Jerez-Mayorga, D., Guisado-Requena, I.M., 2022. Effect of Antioxidant Supplementation on Markers of Oxidative Stress and Muscle Damage after Strength Exercise: A Systematic Review. IJERPH 19, 1803. https://doi.org/10.3390/ijerph19031803
- El Abed, K., Ammar, A., Boukhris, O., Trabelsi, K., Masmoudi, L., Bailey, S.J., Hakim, A., Bragazzi, N.L., 2019a. Independent and Combined Effects of All-Out Sprint and Low-Intensity Continuous Exercise on Plasma Oxidative Stress Biomarkers in Trained Judokas. Front. Physiol. 10, 842. https://doi.org/10.3389/fphys.2019.00842
- El Abed, K., Ammar, A., Boukhris, O., Trabelsi, K., Masmoudi, L., Bailey, S.J., Hakim, A., Bragazzi, N.L., 2019b. Independent and Combined Effects of All-Out Sprint and Low-Intensity Continuous Exercise on Plasma Oxidative Stress Biomarkers in Trained Judokas. Front. Physiol. 10, 842. https://doi.org/10.3389/fphys.2019.00842
- Erjavec, V., Vovk, T., Nemec Svete, A., 2022. The Effect of Two Acute Bouts of Exercise on Oxidative Stress, Hematological, and Biochemical Parameters, and Rectal Temperature in Trained Canicross Dogs. Front. Vet. Sci. 9, 767482. https://doi.org/10.3389/fvets.2022.767482
- Flensted-Jensen, M., Gram, M., Dela, F., Helge, J.W., Larsen, S., 2021. Six weeks of high intensity cycle training reduces H2O2 emission and increases antioxidant protein levels in obese adults with risk factors for type 2 diabetes. Free Radical Biology and Medicine 173, 1–6. https://doi.org/10.1016/j.freeradbiomed.2021.07.020
- Henríquez-Olguin, C., Knudsen, J.R., Raun, S.H., Li, Z., Dalbram, E., Treebak, J.T., Sylow, L., Holmdahl, R., Richter, E.A., Jaimovich, E., Jensen, T.E., 2019. Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nat Commun 10, 4623. https://doi.org/10.1038/s41467-019-12523-9
- Lu, Y., Wiltshire, H.D., Baker, J.S., Wang, Q., 2021. Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. Biology 10, 1272. https://doi.org/10.3390/biology10121272
- McKeegan, K., Mason, S.A., Trewin, A.J., Keske, M.A., Wadley, G.D., Della Gatta, P.A., Nikolaidis, M.G., Parker, L., 2021. Reactive oxygen species in exercise and insulin resistance: Working towards personalized antioxidant treatment. Redox Biology 44, 102005. https://doi.org/10.1016/j.redox.2021.102005
- Nobari, H., Saedmocheshi, S., Chung, L.H., Suzuki, K., Maynar-Mariño, M., Pérez-Gómez, J., 2021. An Overview on How Exercise with Green Tea Consumption Can Prevent the Production of Reactive Oxygen Species and Improve Sports Performance. IJERPH 19, 218. https://doi.org/10.3390/ijerph19010218
- Pan, R., Chen, Y., 2021. Management of Oxidative Stress: Crosstalk Between Brown/Beige Adipose Tissues and Skeletal Muscles. Front. Physiol. 12, 712372. https://doi.org/10.3389/fphys.2021.712372
- Poblete Aro, C.E., Russell Guzmán, J.A., Soto Muñoz, M.E., Villegas González, B.E., 2015. Effects of high intensity interval training versus moderate intensity continuous training on the reduction of oxidative stress in type 2 diabetic adult patients: CAT. Medwave 15, e6212–e6212. https://doi.org/10.5867/medwave.2015.07.6212
- Powers, S.K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M.P., Hyatt, H., 2020. Exercise-induced oxidative stress: Friend or foe? Journal of Sport and Health Science 9, 415–425. https://doi.org/10.1016/j.jshs.2020.04.001
- Prasertsri, P., Phoemsapthawee, J., Kuamsub, S., Poolpol, K., Boonla, O., 2022. Effects of Long-Term Regular Continuous and Intermittent Walking on Oxidative Stress, Metabolic Profile, Heart Rate Variability, and Blood Pressure in Older Adults with Hypertension. Journal of Environmental and Public Health 2022, 1–12. https://doi.org/10.1155/2022/5942947
- Radak, Z., Ishihara, K., Tekus, E., Varga, C., Posa, A., Balogh, L., Boldogh, I., Koltai, E., 2017. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biology 12, 285–290. https://doi.org/10.1016/j.redox.2017.02.015
- San-Millan, I., Sparagna, G.C., Chapman, H.L., Warkins, V.L., Chatfield, K.C., Shuff, S.R., Martinez, J.L., Brooks, G.A., 2022. Chronic Lactate Exposure Decreases Mitochondrial Function by Inhibition of Fatty Acid Uptake and Cardiolipin Alterations in Neonatal Rat Cardiomyocytes. Front. Nutr. 9, 809485. https://doi.org/10.3389/fnut.2022.809485
- Semeraro, M.D., Almer, G., Kaiser, M., Zelzer, S., Meinitzer, A., Scharnagl, H., Sedej, S., Gruber, H.-J., Herrmann, M., 2022. The effects of long-term moderate exercise and Western-type diet on oxidative/nitrosative stress, serum lipids and cytokines in female Sprague Dawley rats. Eur J Nutr 61, 255–268. https://doi.org/10.1007/s00394-021-02639-4
- Seputra, T. W. A., Suyoko, A., Rejeki, P. S., Pranoto, A., Herawati, L., Andarianto, A., Yosika, G. F., Izzatunnisa, N., & Wahab, M. K. A. (2022). Effect of Continuous-Exercise and Modification Interval-Exercise on Decreasing Malondialdehyde and Blood Lactate Levels in Non-Professional Shorinji Kempo Athletes. Teorìâ Ta Metodika Fìzičnogo Vihovannâ, 22(2), 209-215. https://doi.org/10.17309/tmfv.2022.2.09
- Simioni, C., Zauli, G., Martelli, A.M., Vitale, M., Sacchetti, G., Gonelli, A., Neri, L.M., 2018. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 9, 17181–17198. https://doi.org/10.18632/oncotarget.24729
- Souissi, W., Bouzid, M.A., Farjallah, M.A., Ben Mahmoud, L., Boudaya, M., Engel, F.A., Sahnoun, Z., 2020. Effect of Different Running Exercise Modalities on Post-Exercise Oxidative Stress Markers in Trained Athletes. IJERPH 17, 3729. https://doi.org/10.3390/ijerph17103729
- Spirlandeli, A., Deminice, R., Jordao, A., 2013. Plasma Malondialdehyde as Biomarker of Lipid Peroxidation: Effects of Acute Exercise. Int J Sports Med 35, 14–18. https://doi.org/10.1055/s-0033-1345132
- Sugiharto, S., Merawati, D., Susanto, H., Pranoto, A., & Taufiq, A. (2022). The exercise-instrumental music program and irisin levels in younger non-professional athletes. Comparative Exercise Physiology, 18(1), 65–73. https://doi.org/10.3920/CEP210015
- Taherkhani, S., Valaei, K., Arazi, H., Suzuki, K., 2021. An Overview of Physical Exercise and Antioxidant Supplementation Influences on Skeletal Muscle Oxidative Stress. Antioxidants 10, 1528. https://doi.org/10.3390/antiox10101528
- Thirupathi, A., Gu, Y., Wiltshire, H.D., Pinho, R.A., 2022. Editorial: Exercise Friend or Foe? For the Management of Oxidative Stress in Health and Diseases. Front. Physiol. 13, 881197. https://doi.org/10.3389/fphys.2022.881197
- Thirupathi, A., Pinho, R.A., Ugbolue, U.C., He, Y., Meng, Y., Gu, Y., 2021a. Effect of Running Exercise on Oxidative Stress Biomarkers: A Systematic Review. Front. Physiol. 11, 610112. https://doi.org/10.3389/fphys.2020.610112
- Thirupathi, A., Wang, M., Lin, J.K., Fekete, G., István, B., Baker, J.S., Gu, Y., 2021b. Effect of Different Exercise Modalities on Oxidative Stress: A Systematic Review. BioMed Research International 2021, 1–10. https://doi.org/10.1155/2021/1947928
- Thomas, D.T., DelCimmuto, N.R., Flack, K.D., Stec, D.E., Hinds, T.D., 2022. Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin. Antioxidants 11, 179. https://doi.org/10.3390/antiox11020179
- Tofas, T., Draganidis, D., Deli, C.K., Georgakouli, K., Fatouros, I.G., Jamurtas, A.Z., 2019. Exercise-Induced Regulation of Redox Status in Cardiovascular Diseases: The Role of Exercise Training and Detraining. Antioxidants 9, 13. https://doi.org/10.3390/antiox9010013
- Tryfidou, D.V., McClean, C., Nikolaidis, M.G., Davison, G.W., 2020. DNA Damage Following Acute Aerobic Exercise: A Systematic Review and Meta-analysis. Sports Med 50, 103–127. https://doi.org/10.1007/s40279-019-01181-y
- Ye, Y., Lin, H., Wan, M., Qiu, P., Xia, R., He, J., Tao, J., Chen, L., Zheng, G., 2021. The Effects of Aerobic Exercise on Oxidative Stress in Older Adults: A Systematic Review and Meta-Analysis. Front. Physiol. 12, 701151. https://doi.org/10.3389/fphys.2021.701151
- Yosika, G.F., Sukoco, P., Pranoto, A., & Purwoto, S. P. (2020). Penurunan malondialdehyde serum setelah latihan interval dan continuous di pagi hari pada perempuan obesitas. Jurnal SPORTIF : Jurnal Penelitian Pembelajaran, 6(2), 288-303. https://doi.org/10.29407/js_unpgri.vi.14289
- Zeng, Z., Jendricke, P., Centner, C., Storck, H., Gollhofer, A., König, D., 2020. Acute Effects of Oatmeal on Exercise-Induced Reactive Oxygen Species Production Following High-Intensity Interval Training in Women: A Randomized Controlled Trial. Antioxidants 10, 3. https://doi.org/10.3390/antiox10010003
- Zhang, S., 2022. Research on the Oxidative Stress Response of the Human Body Caused by Different Nutritional Supplements and the Improvement Effect of Exercise. Computational Intelligence and Neuroscience 2022, 1–11. https://doi.org/10.1155/2022/1355254
References
Brooks, G.A., 2020. Lactate as a fulcrum of metabolism. Redox Biology 35, 101454. https://doi.org/10.1016/j.redox.2020.101454
Canals-Garzón, C., Guisado-Barrilao, R., Martínez-García, D., Chirosa-Ríos, I.J., Jerez-Mayorga, D., Guisado-Requena, I.M., 2022. Effect of Antioxidant Supplementation on Markers of Oxidative Stress and Muscle Damage after Strength Exercise: A Systematic Review. IJERPH 19, 1803. https://doi.org/10.3390/ijerph19031803
El Abed, K., Ammar, A., Boukhris, O., Trabelsi, K., Masmoudi, L., Bailey, S.J., Hakim, A., Bragazzi, N.L., 2019a. Independent and Combined Effects of All-Out Sprint and Low-Intensity Continuous Exercise on Plasma Oxidative Stress Biomarkers in Trained Judokas. Front. Physiol. 10, 842. https://doi.org/10.3389/fphys.2019.00842
El Abed, K., Ammar, A., Boukhris, O., Trabelsi, K., Masmoudi, L., Bailey, S.J., Hakim, A., Bragazzi, N.L., 2019b. Independent and Combined Effects of All-Out Sprint and Low-Intensity Continuous Exercise on Plasma Oxidative Stress Biomarkers in Trained Judokas. Front. Physiol. 10, 842. https://doi.org/10.3389/fphys.2019.00842
Erjavec, V., Vovk, T., Nemec Svete, A., 2022. The Effect of Two Acute Bouts of Exercise on Oxidative Stress, Hematological, and Biochemical Parameters, and Rectal Temperature in Trained Canicross Dogs. Front. Vet. Sci. 9, 767482. https://doi.org/10.3389/fvets.2022.767482
Flensted-Jensen, M., Gram, M., Dela, F., Helge, J.W., Larsen, S., 2021. Six weeks of high intensity cycle training reduces H2O2 emission and increases antioxidant protein levels in obese adults with risk factors for type 2 diabetes. Free Radical Biology and Medicine 173, 1–6. https://doi.org/10.1016/j.freeradbiomed.2021.07.020
Henríquez-Olguin, C., Knudsen, J.R., Raun, S.H., Li, Z., Dalbram, E., Treebak, J.T., Sylow, L., Holmdahl, R., Richter, E.A., Jaimovich, E., Jensen, T.E., 2019. Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nat Commun 10, 4623. https://doi.org/10.1038/s41467-019-12523-9
Lu, Y., Wiltshire, H.D., Baker, J.S., Wang, Q., 2021. Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. Biology 10, 1272. https://doi.org/10.3390/biology10121272
McKeegan, K., Mason, S.A., Trewin, A.J., Keske, M.A., Wadley, G.D., Della Gatta, P.A., Nikolaidis, M.G., Parker, L., 2021. Reactive oxygen species in exercise and insulin resistance: Working towards personalized antioxidant treatment. Redox Biology 44, 102005. https://doi.org/10.1016/j.redox.2021.102005
Nobari, H., Saedmocheshi, S., Chung, L.H., Suzuki, K., Maynar-Mariño, M., Pérez-Gómez, J., 2021. An Overview on How Exercise with Green Tea Consumption Can Prevent the Production of Reactive Oxygen Species and Improve Sports Performance. IJERPH 19, 218. https://doi.org/10.3390/ijerph19010218
Pan, R., Chen, Y., 2021. Management of Oxidative Stress: Crosstalk Between Brown/Beige Adipose Tissues and Skeletal Muscles. Front. Physiol. 12, 712372. https://doi.org/10.3389/fphys.2021.712372
Poblete Aro, C.E., Russell Guzmán, J.A., Soto Muñoz, M.E., Villegas González, B.E., 2015. Effects of high intensity interval training versus moderate intensity continuous training on the reduction of oxidative stress in type 2 diabetic adult patients: CAT. Medwave 15, e6212–e6212. https://doi.org/10.5867/medwave.2015.07.6212
Powers, S.K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M.P., Hyatt, H., 2020. Exercise-induced oxidative stress: Friend or foe? Journal of Sport and Health Science 9, 415–425. https://doi.org/10.1016/j.jshs.2020.04.001
Prasertsri, P., Phoemsapthawee, J., Kuamsub, S., Poolpol, K., Boonla, O., 2022. Effects of Long-Term Regular Continuous and Intermittent Walking on Oxidative Stress, Metabolic Profile, Heart Rate Variability, and Blood Pressure in Older Adults with Hypertension. Journal of Environmental and Public Health 2022, 1–12. https://doi.org/10.1155/2022/5942947
Radak, Z., Ishihara, K., Tekus, E., Varga, C., Posa, A., Balogh, L., Boldogh, I., Koltai, E., 2017. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biology 12, 285–290. https://doi.org/10.1016/j.redox.2017.02.015
San-Millan, I., Sparagna, G.C., Chapman, H.L., Warkins, V.L., Chatfield, K.C., Shuff, S.R., Martinez, J.L., Brooks, G.A., 2022. Chronic Lactate Exposure Decreases Mitochondrial Function by Inhibition of Fatty Acid Uptake and Cardiolipin Alterations in Neonatal Rat Cardiomyocytes. Front. Nutr. 9, 809485. https://doi.org/10.3389/fnut.2022.809485
Semeraro, M.D., Almer, G., Kaiser, M., Zelzer, S., Meinitzer, A., Scharnagl, H., Sedej, S., Gruber, H.-J., Herrmann, M., 2022. The effects of long-term moderate exercise and Western-type diet on oxidative/nitrosative stress, serum lipids and cytokines in female Sprague Dawley rats. Eur J Nutr 61, 255–268. https://doi.org/10.1007/s00394-021-02639-4
Seputra, T. W. A., Suyoko, A., Rejeki, P. S., Pranoto, A., Herawati, L., Andarianto, A., Yosika, G. F., Izzatunnisa, N., & Wahab, M. K. A. (2022). Effect of Continuous-Exercise and Modification Interval-Exercise on Decreasing Malondialdehyde and Blood Lactate Levels in Non-Professional Shorinji Kempo Athletes. Teorìâ Ta Metodika Fìzičnogo Vihovannâ, 22(2), 209-215. https://doi.org/10.17309/tmfv.2022.2.09
Simioni, C., Zauli, G., Martelli, A.M., Vitale, M., Sacchetti, G., Gonelli, A., Neri, L.M., 2018. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 9, 17181–17198. https://doi.org/10.18632/oncotarget.24729
Souissi, W., Bouzid, M.A., Farjallah, M.A., Ben Mahmoud, L., Boudaya, M., Engel, F.A., Sahnoun, Z., 2020. Effect of Different Running Exercise Modalities on Post-Exercise Oxidative Stress Markers in Trained Athletes. IJERPH 17, 3729. https://doi.org/10.3390/ijerph17103729
Spirlandeli, A., Deminice, R., Jordao, A., 2013. Plasma Malondialdehyde as Biomarker of Lipid Peroxidation: Effects of Acute Exercise. Int J Sports Med 35, 14–18. https://doi.org/10.1055/s-0033-1345132
Sugiharto, S., Merawati, D., Susanto, H., Pranoto, A., & Taufiq, A. (2022). The exercise-instrumental music program and irisin levels in younger non-professional athletes. Comparative Exercise Physiology, 18(1), 65–73. https://doi.org/10.3920/CEP210015
Taherkhani, S., Valaei, K., Arazi, H., Suzuki, K., 2021. An Overview of Physical Exercise and Antioxidant Supplementation Influences on Skeletal Muscle Oxidative Stress. Antioxidants 10, 1528. https://doi.org/10.3390/antiox10101528
Thirupathi, A., Gu, Y., Wiltshire, H.D., Pinho, R.A., 2022. Editorial: Exercise Friend or Foe? For the Management of Oxidative Stress in Health and Diseases. Front. Physiol. 13, 881197. https://doi.org/10.3389/fphys.2022.881197
Thirupathi, A., Pinho, R.A., Ugbolue, U.C., He, Y., Meng, Y., Gu, Y., 2021a. Effect of Running Exercise on Oxidative Stress Biomarkers: A Systematic Review. Front. Physiol. 11, 610112. https://doi.org/10.3389/fphys.2020.610112
Thirupathi, A., Wang, M., Lin, J.K., Fekete, G., István, B., Baker, J.S., Gu, Y., 2021b. Effect of Different Exercise Modalities on Oxidative Stress: A Systematic Review. BioMed Research International 2021, 1–10. https://doi.org/10.1155/2021/1947928
Thomas, D.T., DelCimmuto, N.R., Flack, K.D., Stec, D.E., Hinds, T.D., 2022. Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin. Antioxidants 11, 179. https://doi.org/10.3390/antiox11020179
Tofas, T., Draganidis, D., Deli, C.K., Georgakouli, K., Fatouros, I.G., Jamurtas, A.Z., 2019. Exercise-Induced Regulation of Redox Status in Cardiovascular Diseases: The Role of Exercise Training and Detraining. Antioxidants 9, 13. https://doi.org/10.3390/antiox9010013
Tryfidou, D.V., McClean, C., Nikolaidis, M.G., Davison, G.W., 2020. DNA Damage Following Acute Aerobic Exercise: A Systematic Review and Meta-analysis. Sports Med 50, 103–127. https://doi.org/10.1007/s40279-019-01181-y
Ye, Y., Lin, H., Wan, M., Qiu, P., Xia, R., He, J., Tao, J., Chen, L., Zheng, G., 2021. The Effects of Aerobic Exercise on Oxidative Stress in Older Adults: A Systematic Review and Meta-Analysis. Front. Physiol. 12, 701151. https://doi.org/10.3389/fphys.2021.701151
Yosika, G.F., Sukoco, P., Pranoto, A., & Purwoto, S. P. (2020). Penurunan malondialdehyde serum setelah latihan interval dan continuous di pagi hari pada perempuan obesitas. Jurnal SPORTIF : Jurnal Penelitian Pembelajaran, 6(2), 288-303. https://doi.org/10.29407/js_unpgri.vi.14289
Zeng, Z., Jendricke, P., Centner, C., Storck, H., Gollhofer, A., König, D., 2020. Acute Effects of Oatmeal on Exercise-Induced Reactive Oxygen Species Production Following High-Intensity Interval Training in Women: A Randomized Controlled Trial. Antioxidants 10, 3. https://doi.org/10.3390/antiox10010003
Zhang, S., 2022. Research on the Oxidative Stress Response of the Human Body Caused by Different Nutritional Supplements and the Improvement Effect of Exercise. Computational Intelligence and Neuroscience 2022, 1–11. https://doi.org/10.1155/2022/1355254