Main Article Content

Abstract

Exercise is commonly perceived as a pleasurable and healthy activity. However, it is classified as a complex activity that potentially enhances the formation of free radicals and oxidative stress. This study aims to analyze lipid peroxidation, as the biomarker of free radicals, in interval exercise. A total of 16 trained non-athlete male adolescents, aged 20-21 years old, with normal blood pressure, normal resting heart rate, and gave good level of physical fitness voluntarily participated in this study. The participants were randomly separated into two groups, namely the K1 (n=8, interval exercise with active resting medium intensity pedaling ergometer bike) and  K2 (n=8, interval exercise with resting without pedaling the ergometer bike). The interval exercise was carried out at 60-70% HRmax intensity for 35 minutes. The blood sample for Malondialdehyde (MDA) level analysis, as the lipid peroxidation biomarker, was taken using Thiobarbituric acid reactive substances (TBARS). The blood samples were collected before and after the interval exercise.  The obtained data were analyzed using the one-way ANOVA test with a 5% significance level. Our results suggest no significant different level of MDA, a lipid peroxidation biomarker, between the interval exercise with resting through medium intensity pedaling ergometer bike and the interval exercise with resting with no pedaling ergometer bike. However, the interval exercise resting through pedaling an ergometer bike presented relatively higher lipid peroxidation than the interval exercise resting without pedaling an ergometer bike. Therefore, following the free radical concept, interval exercise with resting through pedaling an ergometer bike is more beneficial than the exercise without pedaling an ergometer bike resting.

Keywords

Interval exercise medium intensity free radical lipid peroxidation

Article Details

How to Cite
Sugiharto, Merawati, D., Andiana, O., & Pranoto, A. (2022). Lipid Peroxidation Level on Moderate-Intensity Interval Exercise on Non-Athlete Adolescent. Kinestetik : Jurnal Ilmiah Pendidikan Jasmani, 6(4), 628–639. https://doi.org/10.33369/jk.v6i4.22867

References

  1. Brooks, G.A., 2020. Lactate as a fulcrum of metabolism. Redox Biology 35, 101454. https://doi.org/10.1016/j.redox.2020.101454
  2. Canals-Garzón, C., Guisado-Barrilao, R., Martínez-García, D., Chirosa-Ríos, I.J., Jerez-Mayorga, D., Guisado-Requena, I.M., 2022. Effect of Antioxidant Supplementation on Markers of Oxidative Stress and Muscle Damage after Strength Exercise: A Systematic Review. IJERPH 19, 1803. https://doi.org/10.3390/ijerph19031803
  3. El Abed, K., Ammar, A., Boukhris, O., Trabelsi, K., Masmoudi, L., Bailey, S.J., Hakim, A., Bragazzi, N.L., 2019a. Independent and Combined Effects of All-Out Sprint and Low-Intensity Continuous Exercise on Plasma Oxidative Stress Biomarkers in Trained Judokas. Front. Physiol. 10, 842. https://doi.org/10.3389/fphys.2019.00842
  4. El Abed, K., Ammar, A., Boukhris, O., Trabelsi, K., Masmoudi, L., Bailey, S.J., Hakim, A., Bragazzi, N.L., 2019b. Independent and Combined Effects of All-Out Sprint and Low-Intensity Continuous Exercise on Plasma Oxidative Stress Biomarkers in Trained Judokas. Front. Physiol. 10, 842. https://doi.org/10.3389/fphys.2019.00842
  5. Erjavec, V., Vovk, T., Nemec Svete, A., 2022. The Effect of Two Acute Bouts of Exercise on Oxidative Stress, Hematological, and Biochemical Parameters, and Rectal Temperature in Trained Canicross Dogs. Front. Vet. Sci. 9, 767482. https://doi.org/10.3389/fvets.2022.767482
  6. Flensted-Jensen, M., Gram, M., Dela, F., Helge, J.W., Larsen, S., 2021. Six weeks of high intensity cycle training reduces H2O2 emission and increases antioxidant protein levels in obese adults with risk factors for type 2 diabetes. Free Radical Biology and Medicine 173, 1–6. https://doi.org/10.1016/j.freeradbiomed.2021.07.020
  7. Henríquez-Olguin, C., Knudsen, J.R., Raun, S.H., Li, Z., Dalbram, E., Treebak, J.T., Sylow, L., Holmdahl, R., Richter, E.A., Jaimovich, E., Jensen, T.E., 2019. Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nat Commun 10, 4623. https://doi.org/10.1038/s41467-019-12523-9
  8. Lu, Y., Wiltshire, H.D., Baker, J.S., Wang, Q., 2021. Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. Biology 10, 1272. https://doi.org/10.3390/biology10121272
  9. McKeegan, K., Mason, S.A., Trewin, A.J., Keske, M.A., Wadley, G.D., Della Gatta, P.A., Nikolaidis, M.G., Parker, L., 2021. Reactive oxygen species in exercise and insulin resistance: Working towards personalized antioxidant treatment. Redox Biology 44, 102005. https://doi.org/10.1016/j.redox.2021.102005
  10. Nobari, H., Saedmocheshi, S., Chung, L.H., Suzuki, K., Maynar-Mariño, M., Pérez-Gómez, J., 2021. An Overview on How Exercise with Green Tea Consumption Can Prevent the Production of Reactive Oxygen Species and Improve Sports Performance. IJERPH 19, 218. https://doi.org/10.3390/ijerph19010218
  11. Pan, R., Chen, Y., 2021. Management of Oxidative Stress: Crosstalk Between Brown/Beige Adipose Tissues and Skeletal Muscles. Front. Physiol. 12, 712372. https://doi.org/10.3389/fphys.2021.712372
  12. Poblete Aro, C.E., Russell Guzmán, J.A., Soto Muñoz, M.E., Villegas González, B.E., 2015. Effects of high intensity interval training versus moderate intensity continuous training on the reduction of oxidative stress in type 2 diabetic adult patients: CAT. Medwave 15, e6212–e6212. https://doi.org/10.5867/medwave.2015.07.6212
  13. Powers, S.K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M.P., Hyatt, H., 2020. Exercise-induced oxidative stress: Friend or foe? Journal of Sport and Health Science 9, 415–425. https://doi.org/10.1016/j.jshs.2020.04.001
  14. Prasertsri, P., Phoemsapthawee, J., Kuamsub, S., Poolpol, K., Boonla, O., 2022. Effects of Long-Term Regular Continuous and Intermittent Walking on Oxidative Stress, Metabolic Profile, Heart Rate Variability, and Blood Pressure in Older Adults with Hypertension. Journal of Environmental and Public Health 2022, 1–12. https://doi.org/10.1155/2022/5942947
  15. Radak, Z., Ishihara, K., Tekus, E., Varga, C., Posa, A., Balogh, L., Boldogh, I., Koltai, E., 2017. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biology 12, 285–290. https://doi.org/10.1016/j.redox.2017.02.015
  16. San-Millan, I., Sparagna, G.C., Chapman, H.L., Warkins, V.L., Chatfield, K.C., Shuff, S.R., Martinez, J.L., Brooks, G.A., 2022. Chronic Lactate Exposure Decreases Mitochondrial Function by Inhibition of Fatty Acid Uptake and Cardiolipin Alterations in Neonatal Rat Cardiomyocytes. Front. Nutr. 9, 809485. https://doi.org/10.3389/fnut.2022.809485
  17. Semeraro, M.D., Almer, G., Kaiser, M., Zelzer, S., Meinitzer, A., Scharnagl, H., Sedej, S., Gruber, H.-J., Herrmann, M., 2022. The effects of long-term moderate exercise and Western-type diet on oxidative/nitrosative stress, serum lipids and cytokines in female Sprague Dawley rats. Eur J Nutr 61, 255–268. https://doi.org/10.1007/s00394-021-02639-4
  18. Seputra, T. W. A., Suyoko, A., Rejeki, P. S., Pranoto, A., Herawati, L., Andarianto, A., Yosika, G. F., Izzatunnisa, N., & Wahab, M. K. A. (2022). Effect of Continuous-Exercise and Modification Interval-Exercise on Decreasing Malondialdehyde and Blood Lactate Levels in Non-Professional Shorinji Kempo Athletes. Teorìâ Ta Metodika Fìzičnogo Vihovannâ, 22(2), 209-215. https://doi.org/10.17309/tmfv.2022.2.09
  19. Simioni, C., Zauli, G., Martelli, A.M., Vitale, M., Sacchetti, G., Gonelli, A., Neri, L.M., 2018. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 9, 17181–17198. https://doi.org/10.18632/oncotarget.24729
  20. Souissi, W., Bouzid, M.A., Farjallah, M.A., Ben Mahmoud, L., Boudaya, M., Engel, F.A., Sahnoun, Z., 2020. Effect of Different Running Exercise Modalities on Post-Exercise Oxidative Stress Markers in Trained Athletes. IJERPH 17, 3729. https://doi.org/10.3390/ijerph17103729
  21. Spirlandeli, A., Deminice, R., Jordao, A., 2013. Plasma Malondialdehyde as Biomarker of Lipid Peroxidation: Effects of Acute Exercise. Int J Sports Med 35, 14–18. https://doi.org/10.1055/s-0033-1345132
  22. Sugiharto, S., Merawati, D., Susanto, H., Pranoto, A., & Taufiq, A. (2022). The exercise-instrumental music program and irisin levels in younger non-professional athletes. Comparative Exercise Physiology, 18(1), 65–73. https://doi.org/10.3920/CEP210015
  23. Taherkhani, S., Valaei, K., Arazi, H., Suzuki, K., 2021. An Overview of Physical Exercise and Antioxidant Supplementation Influences on Skeletal Muscle Oxidative Stress. Antioxidants 10, 1528. https://doi.org/10.3390/antiox10101528
  24. Thirupathi, A., Gu, Y., Wiltshire, H.D., Pinho, R.A., 2022. Editorial: Exercise Friend or Foe? For the Management of Oxidative Stress in Health and Diseases. Front. Physiol. 13, 881197. https://doi.org/10.3389/fphys.2022.881197
  25. Thirupathi, A., Pinho, R.A., Ugbolue, U.C., He, Y., Meng, Y., Gu, Y., 2021a. Effect of Running Exercise on Oxidative Stress Biomarkers: A Systematic Review. Front. Physiol. 11, 610112. https://doi.org/10.3389/fphys.2020.610112
  26. Thirupathi, A., Wang, M., Lin, J.K., Fekete, G., István, B., Baker, J.S., Gu, Y., 2021b. Effect of Different Exercise Modalities on Oxidative Stress: A Systematic Review. BioMed Research International 2021, 1–10. https://doi.org/10.1155/2021/1947928
  27. Thomas, D.T., DelCimmuto, N.R., Flack, K.D., Stec, D.E., Hinds, T.D., 2022. Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin. Antioxidants 11, 179. https://doi.org/10.3390/antiox11020179
  28. Tofas, T., Draganidis, D., Deli, C.K., Georgakouli, K., Fatouros, I.G., Jamurtas, A.Z., 2019. Exercise-Induced Regulation of Redox Status in Cardiovascular Diseases: The Role of Exercise Training and Detraining. Antioxidants 9, 13. https://doi.org/10.3390/antiox9010013
  29. Tryfidou, D.V., McClean, C., Nikolaidis, M.G., Davison, G.W., 2020. DNA Damage Following Acute Aerobic Exercise: A Systematic Review and Meta-analysis. Sports Med 50, 103–127. https://doi.org/10.1007/s40279-019-01181-y
  30. Ye, Y., Lin, H., Wan, M., Qiu, P., Xia, R., He, J., Tao, J., Chen, L., Zheng, G., 2021. The Effects of Aerobic Exercise on Oxidative Stress in Older Adults: A Systematic Review and Meta-Analysis. Front. Physiol. 12, 701151. https://doi.org/10.3389/fphys.2021.701151
  31. Yosika, G.F., Sukoco, P., Pranoto, A., & Purwoto, S. P. (2020). Penurunan malondialdehyde serum setelah latihan interval dan continuous di pagi hari pada perempuan obesitas. Jurnal SPORTIF : Jurnal Penelitian Pembelajaran, 6(2), 288-303. https://doi.org/10.29407/js_unpgri.vi.14289
  32. Zeng, Z., Jendricke, P., Centner, C., Storck, H., Gollhofer, A., König, D., 2020. Acute Effects of Oatmeal on Exercise-Induced Reactive Oxygen Species Production Following High-Intensity Interval Training in Women: A Randomized Controlled Trial. Antioxidants 10, 3. https://doi.org/10.3390/antiox10010003
  33. Zhang, S., 2022. Research on the Oxidative Stress Response of the Human Body Caused by Different Nutritional Supplements and the Improvement Effect of Exercise. Computational Intelligence and Neuroscience 2022, 1–11. https://doi.org/10.1155/2022/1355254