Main Article Content

Abstract

This study aims to analyze the effect of HIIT training on triglyceride levels in obese adolescents. This study used an experimental method with a pretest–posttest control group design. A total of 32 adolescents with type I obesity (BMI >31–38 kg/m²) were divided into an experimental group and a control group. The experimental group underwent HIIT training with a ratio of 10 seconds of work and 20 seconds of rest for six weeks with a frequency of three times per week, while the control group did not receive structured training. Blood triglyceride levels were measured using the SD BIOSENSOR LipidoCare Analyzer before and after the intervention. Data analysis was performed using paired sample t-tests and independent sample t-tests with a significance level of 0.05. The results showed that HIIT significantly reduced triglyceride levels from 351.1±6.9 mg/dL to 140.1±2.2 mg/dL (p<0.001). In addition, body mass index also decreased significantly from 34.3±0.4 kg/m² to 30.5±0.15 kg/m² (p=0.012). The greater decrease in triglycerides compared to BMI indicates that metabolic improvement can occur more quickly than anthropometric changes. It is concluded that HIIT exercise is effective in lowering triglyceride levels and improving metabolic health in obese adolescents. HIIT can be recommended as an efficient and applicable exercise strategy in efforts to prevent cardiometabolic risks from adolescence.

Keywords

HIIT TG Obesity

Article Details

How to Cite
Prasetyo, yona bayu, Hadiono, Andryas yuniarto, Vega Mareta sceisarriya, Achmad furqon Bildhonny, & Tiassari Janjang Suminar. (2025). The effect of high-intensity interval training on triglyceride levels in obese adolescents. Kinestetik : Jurnal Ilmiah Pendidikan Jasmani, 9(4), 1014–1023. https://doi.org/10.33369/jk.v9i4.46827

References

  1. Ahmad, A. M., Mahmoud, A. M., Serry, Z. H., Mohamed, M. M., & Abd Elghaffar, H. A. (2023). Effects of low-versus high-volume high-intensity interval training on glycemic control and quality of life in obese women with type 2 diabetes. A randomized controlled trial. Journal of Exercise Science and Fitness, 21(4), 395–404. https://doi.org/10.1016/j.jesf.2023.08.003
  2. Alarcón-Gómez, J., Calatayud, J., Chulvi-Medrano, I., & Martín-Rivera, F. (2021). Effects of a HIIT protocol on cardiovascular risk factors in a type 1 diabetes mellitus population. International Journal of Environmental Research and Public Health, 18(3), 1–12. https://doi.org/10.3390/ijerph18031262
  3. Bacchetti, T., Morresi, C., Simonetti, O., & Ferretti, G. (2024). Effect of Diet on HDL in Obesity. Molecules, 29(24), 1–17. https://doi.org/10.3390/molecules29245955
  4. Bartoloni, B., Mannelli, M., Gamberi, T., & Fiaschi, T. (2024). The Multiple Roles of Lactate in the Skeletal Muscle.
  5. Brooks, G. A. (2020). Redox Biology Lactate as a fulcrum of metabolism. Redox Biology, 35(January), 101454. https://doi.org/10.1016/j.redox.2020.101454
  6. Chinasho, A., Bedadi, B., Lemma, T., Tana, T., Hordofa, T., & Elias, B. (2023). Quality assessment and evaluation of irrigation water and soil used for maize (Zea mays L.) production in Boloso Sore district, southern Ethiopia. Heliyon, 9(6), e17299. https://doi.org/10.1016/j.heliyon.2023.e17299
  7. El Meouchy, P., Wahoud, M., Allam, S., Chedid, R., Karam, W., & Karam, S. (2022). Hypertension Related to Obesity: Pathogenesis, Characteristics and Factors for Control. International Journal of Molecular Sciences, 23(20). https://doi.org/10.3390/ijms232012305
  8. Feng, J., Zhang, Q., Chen, B., Chen, J., Wang, W., Hu, Y., Yu, J., & Huang, H. (2024). Effects of high-intensity intermittent exercise on glucose and lipid metabolism in type 2 diabetes patients: a systematic review and meta-analysis. Frontiers in Endocrinology, 15(June). https://doi.org/10.3389/fendo.2024.1360998
  9. Gaweł, E., Hall, B., Siatkowski, S., Grabowska, A., & Zwierzchowska, A. (2024). The Combined Effects of High-Intensity Interval Exercise Training and Dietary Supplementation on Reduction of Body Fat in Adults with Overweight and Obesity: A Systematic Review. Nutrients, 16(3). https://doi.org/10.3390/nu16030355
  10. Koskinas, K. C., Van Craenenbroeck, E. M., Antoniades, C., Blüher, M., Gorter, T. M., Hanssen, H., Marx, N., McDonagh, T. A., Mingrone, G., Rosengren, A., Prescott, E. B., Aboyans, V., Blomstrom-Lundqvist, C., Nielsen, J. C., Donal, E., Döhner, W., Ferrini, M., Halvorsen, S., Hassager, C., … Zeppenfeld, K. (2024). Obesity and cardiovascular disease: an ESC clinical consensus statement. European Heart Journal, 45(38), 4063–4098. https://doi.org/10.1093/eurheartj/ehae508
  11. Lelou, E., Corlu, A., Nesseler, N., Rauch, C., Mallédant, Y., Seguin, P., & Aninat, C. (2022). The Role of Catecholamines in Pathophysiological Liver Processes. Cells, 11(6). https://doi.org/10.3390/cells11061021
  12. Louzada Júnior, A., Mota da Silva, J., Furtado da Silva, V., Clodoaldo Melo Castro, A., Eufrásio de Freitas, R., Braga Cavalcante, J., Maia dos Santos, K., Paula Azevedo Albuquerque, A., Paraguassú Brandão, P., de Nazaré Dias Bello, M., Carmen Guimarães, A., Cesar Gurgel de Alencar Carvalho, M., Soares Pernambuco, C., Benício Ramos Lima, E., Ramos Coelho, R., Augusto de Souza Santos, C., Cleria Pereira Bezerra, J., Henrique Martin Dantas, E., Paulo Martins Silva, R., … Rafael Valentim-Silva, J. (2020). Multimodal HIIT is More Efficient Than Moderate Continuous Training for Management of Body Composition, Lipid Profile and Glucose Metabolism in the Diabetic Elderly El Entrenamiento Multimodal es más Eficiente que el Entrenamiento Continuo Moderado para e. Int. J. Morphol, 38(2), 392–399.
  13. McCrary, J. M., & Altenmüller, E. (2021). Mechanisms of Music Impact: Autonomic Tone and the Physical Activity Roadmap to Advancing Understanding and Evidence-Based Policy. Frontiers in Psychology, 12(August), 1–9. https://doi.org/10.3389/fpsyg.2021.727231
  14. Messineo, L., Bakker, J. P., Cronin, J., Yee, J., & White, D. P. (2024). Obstructive sleep apnea and obesity: A review of epidemiology, pathophysiology and the effect of weight-loss treatments. Sleep Medicine Reviews, 78(August), 101996. https://doi.org/10.1016/j.smrv.2024.101996
  15. Monica, & Hendrianingtyas, M. (2022). Correlation of Triglyceride/HDL-Cholesterol Ratio and Visceral Adiposity Index with 25(OH)D in Obese Female. Indonesian Journal of Clinical Pathology and Medical Laboratory, 29(1), 59–63. https://doi.org/10.24293/ijcpml.v29i1.1923
  16. Murillo, S., Brugnara, L., Servitja, J. M., & Novials, A. (2022). High Intensity Interval Training reduces hypoglycemic events compared with continuous aerobic training in individuals with type 1 diabetes: HIIT and hypoglycemia in type 1 diabetes. Diabetes and Metabolism, 48(6). https://doi.org/10.1016/j.diabet.2022.101361
  17. Nedunchezhiyan, U., Varughese, I., Sun, A. R. J., Wu, X., Crawford, R., & Prasadam, I. (2022). Obesity, Inflammation, and Immune System in Osteoarthritis. Frontiers in Immunology, 13(July), 1–19. https://doi.org/10.3389/fimmu.2022.907750
  18. Ouerghi, N., Fradj, M. K. Ben, Duclos, M., Bouassida, A., Feki, M., Weiss, K., & Knechtle, B. (2022). Effects of High‐Intensity Interval Training on Selected Adipokines and Cardiometabolic Risk Markers in Normal‐Weight and Overweight/Obese Young Males. A Pre‐Post Test Trial. Biology, 11(6). https://doi.org/10.3390/biology11060853
  19. ÖZHAN, M. B., & YÜKSEL, G. (2022). The Effect of School Burnout on Academic Achievement and Well-Being in High School Students: A Holistic Model Proposal. International Journal of Contemporary Educational Research, 8(1), 145–162. https://doi.org/10.33200/ijcer.824488
  20. Powell-Wiley, T. M., Poirier, P., Burke, L. E., Després, J. P., Gordon-Larsen, P., Lavie, C. J., Lear, S. A., Ndumele, C. E., Neeland, I. J., Sanders, P., & St-Onge, M. P. (2021). Obesity and Cardiovascular Disease A Scientific Statement From the American Heart Association. Circulation, 143(21), E984–E1010. https://doi.org/10.1161/CIR.0000000000000973
  21. Sean Davidson, W., Heink, A., Sexmith, H., Dolan, L. M., Gordon, S. M., Otvos, J. D., Melchior, J. T., Elder, D. A., Khoury, J., Geh, E., & Shah, A. S. (2017). Obesity is associated with an altered HDL subspecies profle among adolescents with metabolic disease. Journal of Lipid Research, 58(9), 1916–1923. https://doi.org/10.1194/jlr.M078667
  22. Setyawati, R., & Lasroha, M. (2021). Overview of HDL, LDL, Triglycerides, and Total Cholesterol in Obese Patients. Advances in Health Sciences Research, 39(SeSICNiMPH), 12–14.
  23. Stadler, J. T., Lackner, S., Mörkl, S., Trakaki, A., Scharnagl, H., Borenich, A., Wonisch, W., Mangge, H., Zelzer, S., Meier-allard, N., Holasek, S. J., & Marsche, G. (2021). Subclass Distribution. 9(242), 1–17.
  24. Zhu, X., Jiao, J., Liu, Y., Li, H., & Zhang, H. (2024). The Release of Lipolytic Hormones during Various High-Intensity Interval and Moderate-Intensity Continuous Training Regimens and Their Effects on Fat Loss. April, 559–570.