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Abstract 
 

This article dis cusses the often-overlooked "damped" quantum harmonic oscillator, a vibrating system that loses energy 

over time. We bridge the classical-quantum divide, starting with the familiar equation of motion for a damped oscillator 

using Hooke's law. Delving into quantum mechanics, we explore how the Schrödinger equation governs its behavior. We 

then chart a path to understanding its energy changes and time evolution using mathematical tools like annihilation and 

creation operators, eigenstates, and eigenvalues. We then step through the understanding of its energy changes and time 

evolution using mathematical tools like annihilation and creation operators, eigenstates, and eigenvalues. Finally, we 

introduce the time-dependent Schrödinger equation for a damped quantum harmonic oscillator, which paves the way for 

stable oscillations 

 

Keywords: Damped Quantum Oscillator; Canonical Quantization; Invariant Operator; Time-Dependent Schrödinger 

Equation 

 

Abstrak 
 

Artikel ini membahas osilator harmonik kuantum teredam, sebuah sistem getaran yang kehilangan energi seiring waktu, 

yang sering kali diabaikan dalam kajian fisika. Kami menjembatani kesenjangan antara mekanika klasik dan kuantum, 

dimulai dengan persamaan gerak osilator teredam berdasarkan hukum Hooke. Dalam ranah mekanika kuantum, kami 

mengeksplorasi bagaimana persamaan Schrödinger mengatur perilaku sistem ini. Selanjutnya, kami menelusuri 

perubahan energi dan evolusi waktu osilator ini menggunakan alat matematika seperti operator annihilasi dan kreasi, 

eigenstate, dan eigenvalue. Terakhir, kami memperkenalkan persamaan Schrödinger bergantung waktu untuk osilator 

harmonik kuantum teredam, yang membuka wawasan terhadap osilasi stabil dalam sistem ini. 

 

Kata kunci: Osilator Kuantum Teredam; Kuantisasi Kanonik; Operator Invarian; Persamaan Schrödinger Bergantung 

Waktu 

 

I. INTRODUCTION 

In classical mechanics, the motion of an object oscillating on a spring is described by Hooke's 

law(1)(2)(3). This principle states that the force 𝐹 acting on the object is directly proportional to its 

displacement 𝑥 from its equilibrium position and acts(4).  

When damping is introduced, the system is called a damped harmonic oscillator(5). Here, an 

additional force, often due to friction or resistance, causes the oscillations to gradually lose energy 

over time(6). As a result, the amplitude of the oscillations decreases until they eventually come to a 

stop(7). 

In the realm of quantum mechanics, the harmonic oscillator is a fundamental model used to 

describe a wide range of physical systems(1). Although the potential energy in quantum systems is 

not always perfectly harmonic, many can be approximated by a harmonic potential near their stable 

equilibrium points(8). In quantum mechanics, all oscillators are subject to some form of damping, 

though this damping is often minimal(9). Unlike in classical mechanics, a quantum oscillator does not 

lose all its energy but rather reaches a steady state where it continues to oscillate with a reduced 

amplitude(10). 

Unlike classical harmonic oscillators, quantum harmonic oscillators exhibit unique behavior(11). 
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Even when damping is present, a quantum oscillator does not lose all its energy(12). Instead, it reaches 

a steady state where it continues to oscillate with a reduced amplitude(13). This phenomenon arises 

from the principles of quantum mechanics, where energy levels are quantized, meaning they can only 

take on certain discrete values(14). As a result, the quantum oscillator settles into its lowest energy 

state, known as the ground state, and remains there, maintaining a stable oscillation despite the 

damping(15). 

The damped quantum harmonic oscillator presents a significant challenge due to the complexity 

of its description(16). It requires more intricate differential equations than those used for ideal 

harmonic systems. On the other hand, the practical applications of the quantum damped harmonic 

oscillator are limited. They are primarily found in microscopic systems, such as vibrating 

molecules(17).  Moreover, experimental studies in this area are difficult. This is due to the need for 

precise measurements and specialized equipment to maintain controlled environments. This 

complexity, together with its limited applications, is probably a major reason why many textbooks on 

quantum mechanics do not cover quantum damped harmonic oscillation in detail. 

Despite the challenges, the study of quantum damped harmonic oscillations is intriguing, 

particularly for educational purposes. It provides insights into why, in classical mechanics, the 

amplitude of a damped oscillator diminishes over time until it stops, whereas in quantum mechanics, 

the amplitude tends to stabilize at a certain level. This difference highlights the unique nature of 

quantum systems and their behavior(18). 

This article aims to bridge the gap in understanding by exploring the concept of quantum damped 

harmonic oscillators in detail. We will begin with a review of the classical harmonic oscillator and its 

damped counterpart, then move on to discuss the quantum mechanical description and implications 

of damping in quantum systems. Through this exploration, we hope to shed light on the fascinating 

differences between classical and quantum oscillatory behavior and provide a comprehensive 

understanding of quantum damped harmonic oscillations. 

 

II. METHOD 

This study is a theoretical research project aimed at exploring the damped quantum harmonic 

oscillator by bridging classical and quantum mechanics. First, we derive the classical equation of 

motion for a damped harmonic oscillator and express it in terms of Lagrangian and Hamiltonian 

formalisms. We then transition to the quantum mechanical description by applying canonical 

quantization and defining annihilation and creation operators. The Hamiltonian is expressed using 

these operators, enabling us to determine the eigenstates and eigenvalues. To solve the time-

dependent Schrödinger equation, we employ the invariant operator method, introducing a trial 

invariant operator and transforming it with a unitary operator. This allows us to derive the time-

dependent wave function, providing a comprehensive description of the quantum state's evolution. 

The methodology highlights the intricate connections between classical and quantum damping, 

offering insights into the unique behavior of quantum oscillatory systems. 

 

III. RESULTS AND DISCUSSION 

Damped Harmonic Oscillator in Classical Mechanics 

The equation of motion for a damped harmonic oscillator in classical mechanics is given by 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑐

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 0 (1) 

In the context where 𝑥 signifies the deviation of the oscillator from its equilibrium position, 

the process of canonical quantization necessitates the presence of a Lagrangian denoted as 𝐿, which 

serves as the basis for deriving Equation 1 as the Lagrange equation of motion. To achieve this 

objective, it is essential to establish a classical mechanics framework utilizing the Rayleigh 

dissipation function(19).The associated Lagrangian has previously been established to a certain extent 

and is expressed in relation to the variable 𝑥 along with an additional variable 𝑦, the importance of 

which will soon become apparent(20). The Lagrangian equation is thus represented as 
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L = mxẏ̇ +
1

2
R(xẏ − ẋ) − kxy (2) 

 The equation that  𝑦 satisfies is derived by altering  𝑥, 

𝑚�̈� − 𝑅𝑦 + 𝑘𝑦 = 0 (3) 

The equation is the inverse of Eq. 1 for ( 𝑥 ), meaning the solution for ( 𝑦 ) increases rapidly 

over time as the solution for 𝑥 decreases. Consequently, bilinear structures such as the Hamiltonian 

( 𝐻 ) can become independent of time. The derivation of the Hamiltonian follows the standard 

procedure. The canonical momenta are then defined as follows: 

px =
∂L

∂ẋ
= mẏ −

1

2
Ry 

𝑝𝑦 =
∂𝐿

∂�̇�
= 𝑚�̇� +

1

2
𝑅𝑥 

 

(4) 

The hamiltoian 𝐻 reads: 

H = pxẋ + pyẏ − L 

=
1

m
pxpy +

R

2m
ypy −

k − R2

2m
xy 

=
1

m
pxpy +

R

m
pyx − L 

 

(5) 

Now, let's group related terms: 

 

𝐻 = (
𝑅

𝑚
𝑝𝑦 −

1

2𝑚
𝑝𝑥) 𝑥 + (

1

𝑚
𝑝𝑥 +

𝑅

2𝑚
𝑦) 𝑝𝑦 −

1

2𝑚
𝑝𝑦

2 −
𝑘

2
𝑥2 

= �̇�𝑥 + �̇�𝑝𝑦 −
1

2𝑚
𝑝𝑦

2 −
𝑘

2
𝑥2 

= 𝑚�̇��̇� −
1

2𝑚
𝑝𝑦

2 + 𝑘𝑥𝑦 

(6) 

 

Thus, we have successfully derived Eq. 6 from the initial expression of the Hamiltonian. 

 

The fundamental principle is that according to the equation of motion, the Hamiltonian ( 𝐻 ) 

remains independent of time(21). This fact can be confirmed directly by employing the solutions 

derived from Eq. 1 and 3, and considering the structure of ( 𝐻 ): 

𝐻 = 𝑚𝑥�̇̇� + 𝑘𝑥𝑦 (7) 

 

For the underdamped case with an initial unit amplitude, 𝐻 is found to be 𝑘 −
𝑅2

4𝑚
 . 

 

Quantization, Eigenstates and Eigenvalues 

 

The assumption made is that the coordinates ( 𝑥 ) and ( 𝑦 ), along with their canonical 

momenta, follow the Heisenberg uncertainty principle, which states that their uncertainties are related 

by (Δ𝑥 ⋅ Δ𝑝 ≥
ℏ

2
). 

 

[𝑥, 𝑦] = 0 = [𝑝𝑥, 𝑝𝑦] (8) 

 

This analysis describes how the commutators of the position operators ( 𝑥 ) and ( 𝑦 ), as well as the 

momentum operators (𝑝𝑥) and (𝑝𝑦) , form the basis of understanding in quantum mechanics(12). 

First, because ([𝑥, 𝑦] = 0) and ([𝑝𝑥, 𝑝𝑦] = 0), it means that the position and momentum operators in 
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this system are commutative, allowing us to measure both simultaneously without altering the results. 

Next, from the above relationships, we can write: 

 

[𝑥, 𝑦] = 𝑥𝑦 − 𝑦𝑥 = 0 and [𝑝𝑥, 𝑝𝑦] = 𝑝𝑥𝑝𝑦 − 𝑝𝑦𝑝𝑥 = 0 

 

This indicates that the position operators ( 𝑥 ) and ( 𝑦 ) commute with each other, as do the 

momentum operators (𝑝𝑥)and (𝑝𝑦) . Therefore, we can measure both pairs simultaneously without 

altering the outcomes. 

Further, we can perform a commutator transformation: 

 
[𝑥, 𝑦] = 𝑥𝑦 − 𝑦𝑥 = 0 

𝑥𝑦 = 𝑦𝑥 
(9) 

 
 

[𝑝𝑥, 𝑝𝑦] = 𝑝𝑥𝑝𝑦 − 𝑝𝑦𝑝𝑥 = 0 

𝑝𝑥𝑝𝑦 = 𝑝𝑦𝑝𝑥 
(10) 

 

From the above results, we observe that the position operators ( 𝑥 ) and ( 𝑦 ) can be applied in 

different orders with the same result, as can the momentum operators (𝑝𝑥) and (𝑝𝑦) . 

However, if we change the order of the position and momentum operators, we obtain: 

 
[𝑝𝑥, 𝑥] = 𝑝𝑥𝑥 − 𝑥𝑝𝑥  

= (𝑥𝑝𝑥 + [𝑥, 𝑝𝑥]) − 𝑥𝑝x  

= [𝑥, 𝑝𝑥] 
= −𝑖 

 

(11) 

 

and 

[𝑝𝑦 , 𝑦] = 𝑝𝑦𝑦 − 𝑦𝑝𝑦 

= (𝑦𝑝𝑦 + [𝑦, 𝑝𝑦]) − 𝑦𝑝𝑦 

= [𝑦, 𝑝𝑦] 

= −𝑖 
 

(12) 

 

then we get the formula, 

[𝑝𝑥, 𝑥] = [𝑝𝑦 , 𝑦] =
ℏ

𝑖
 (13) 

 

 

If we substitute (𝑝𝑥) and (𝑝𝑦) according to Eq. 4, we obtain: 

 

[�̇�, 𝑥] = [�̇�, 𝑦] =
ℏ

𝑖𝑚
 (14) 

 

The consistency with Eq. 9 is maintained, as mentioned earlier. By employing the Hamiltonian $H$ as 

defined in Equation 5, we can confirm that the quantum Hamiltonian equations of motion correspond 

exactly to Eq. 1 and 3. It's worth highlighting once more that the ability to establish time-independent 

commutation rules like Eq. 9 and 10 relies on the bilinear nature of the variables (𝑥) or (𝑦) and their 

time-reversal counterparts, ensuring that the decay of 𝑥 is counteracted by the growth of (𝑦) or (𝑝𝑥). 
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𝑎 =
1

√2ℏΩ
(

𝑝𝑥

√𝑚
− 𝑖√𝑚Ω𝑥) ,  𝑏 =

1

√2ℏ𝜔
(

𝑝𝑦

√𝑚
− 𝑖√𝑚Ω𝑦) (15) 

 

Let's start by calculating the commutator [𝑎, 𝑎†] to confirm that 𝑎 and 𝑎† are the correct annihilation 

and creation operators for the quantum harmonic oscillator. In this case, 𝑎† is the hermitian conjugate 

of 𝑎, given by [𝑎† =
1

√2ℏΩ
(

𝑝𝑥

√𝑚
+ 𝑖√𝑚Ω𝑥)] 

Let's calculate:  

[𝑎, 𝑎†] = (
1

√2ℏΩ
(

𝑝𝑥

√𝑚
− 𝑖√𝑚Ω𝑥)) (

1

√2ℏΩ
(

𝑝𝑥

√𝑚
+ 𝑖√𝑚Ω𝑥))

− (
1

√2ℏΩ
(

𝑝𝑥

√𝑚
+ 𝑖√𝑚Ω𝑥)) (

1

√2ℏΩ
(

𝑝𝑥

√𝑚
− 𝑖√𝑚Ω𝑥)) 

 

(16) 

 

After algebraic calculation, we obtain [𝑎, 𝑎†] = 1. From here, we can also derive the 

commutator[𝑏, 𝑏†]and demonstrate that 𝑏 and 𝑏† have the same properties as 𝑎 and 𝑎†. 

This confirms that 𝑎 and 𝑏 are the appropriate annihilation and creation operators for the quantum 

harmonic oscillator, where 

Ω2 =
𝑘

𝑚
−

𝑅2

4𝑚2
 (17) 

 

and 
[𝑎, 𝑎+] = [𝑏, 𝑏+] = 1 𝑎𝑛𝑑 [𝑎, 𝑏] = [𝑎+, 𝑏+] = 0 (18) 

 

with ( 𝑎 ) and ( 𝑏 ) and their adjoints (𝑎+)and (𝑏+), where 

𝐻0 ≡
1

𝑚
𝑝𝑥𝑝𝑦 + 𝑚Ω2𝑥𝑦 (19) 

 

becomes, 

𝐻0 ≡ ℏΩ(𝑎+𝑏 + 𝑏+𝑎) (20) 

 

This shows further linear transformation: 

  

𝑎 =
1

√2
(𝐴 + 𝐵),  𝑏 =

1

√2
(𝐴 − 𝐵) (21) 

 

With the consequence 

𝐻0 = ℏΩ(𝐴 + 𝐴+ − 𝐵 − 𝐵+) (22) 

 

It's important to mention that (𝐴) and (𝐵) follow the identical commutation rules as (𝑎) and (𝑏), 

regarding their original variables. 

𝐴 =
𝑎 + 𝑏

√2
,  𝐵 =

𝑎 − 𝑏

√2
 (23) 

 

which from Eq. 10 involves symmetric and anti-symmetric combinations of variables ( 𝑥 ) and ( 𝑦 ), 

for example: 

𝐴 =
1

2√ℏΩ
(𝑚𝑝𝑥 + 𝑝𝑦 − 𝑖𝑚Ω𝑥 + 𝑦) 

( 𝐴 ) changes to even under the transformation ( 𝑥 −  𝑦 ) , while ( 𝐵 ) changes to odd. ( 𝐻 ) can be 
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expressed in terms of ( 𝐴 ) and ( 𝐵 ): 

𝐻 = 𝐻0 + 𝐻1 (24) 

 

where 

𝐻1 = 𝑖
Γ

2
(𝐴+𝐵+ − 𝐴𝐵) (25) 

 

By substituting ( 𝐴 ) and ( 𝐵 ) into the equation for (𝐻1) , we get:  

𝐻1 = 𝑖
Γ

2
(

1

2
(𝑎+ + 𝑏+)(𝑎 − 𝑏) −

1

2
(𝑎 + 𝑏)(𝑎+ − 𝑏+)) (26) 

 

Simplifying the equation, we obtain:  

𝐻1 = 𝑖
Γ

4
(𝑎+𝑎 − 𝑎+𝑏 − 𝑏+𝑎 + 𝑏+𝑏 − 𝑎+𝑎 + 𝑎+𝑏 + 𝑏+𝑎 − 𝑏+𝑏) (27) 

 

Some terms cancel out, and we can simplify further to:  

𝐻1 = 𝑖
Γ

4
(−𝑎+𝑏 − 𝑏+𝑎 + 𝑎+𝑏 + 𝑏+𝑎) 

𝐻1 = 𝑖
Γ

2
(𝑎+𝑏 − 𝑏+𝑎) 

(28) 

 

Now, let's compare (𝐻1) with the general form of the Hamiltonian for a harmonic oscillator, 𝐻0 =
ℏΩ(𝑎+𝑏 + 𝑏+𝑎) . We can conclude that:  

Γ

2
= ℏ (29) 

 

From here, we rearrange the equation to find the value of ( Γ), which gives:  

    Γ =  2ℏΩ (30) 

 

In certain physical contexts, ( Γ) is often used to describe the frequency or characteristic rate of 

interaction in a system. In this case, (Γ ≡
ℏ𝑅

𝑚
) reveals the relationship between this frequency and the 

relevant constant ( 𝑅 ) with respect to the system's mass ( 𝑚 ) . so that 

Γ ≡
ℏ𝑅

𝑚
 (31) 

 

The decay constant for the classical variable ( 𝑥 ) is (
Γ

2ℏ
). In the limit ( 𝑅 → 0 ), [𝐻 →

ℏω(𝐴 + 𝐴+ − 𝐵 − 𝐵+)] 
To understand the time evolution of the damped harmonic oscillator state, we must determine its 

Hamiltonian's eigenstates. This process involves recognizing that (𝐻1), along with two other 

operators, forms an algebra. These operators are defined as(2): 

𝑋 =
1

2
(𝐴+𝐵+ + 𝐴𝐵) 

𝑌 =
1

2
(𝐴+𝐵+ − 𝐴𝐵) 

𝑍 =
1

2
(𝐴+𝐴 + 𝐵𝐵+) 

(32) 

 

(𝐻1) is proportional to ( 𝑌 ). Their commutator relations are 
[𝑋, 𝑌] = 𝑖𝑍 
[𝑍, 𝑌] = 𝑖𝑋 
[𝑍, 𝑋] = 𝑖𝑌 

(33) 
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The operator (𝐻0) is in a commutative relationship with  𝑋,  𝑌 , and  𝑍 and functions as the Casimir 

operator within this algebraic structure.We can use these commutator relationships to express 𝑋2, 𝑌2, 
and 𝑍2 in terms of 𝐻1and 𝐻0: 

𝑋2 =
1

𝑐2
𝐻1

2 

𝑌2 = 1 
𝑍2 = 𝑐2𝐻1

2 
 

(34) 

then we substitute these values into the formula 𝑍2 − 𝑋2 − 𝑌2 = 𝐻0
2 −

1

4
 : 

𝑐2𝐻1
2 −

1

𝑐2
𝐻1

2 − 1 = 𝐻0
2 −

1

4
 (35) 

 

 

when simplified, we get: 

𝑐2 − 1 = 𝐻0
2 −

1

4
 (36) 

 

then, because 𝐻1 = 𝑐𝑌 , we replace 𝐻1
2 with 𝑐2𝑌2 : 

𝑐4𝑌2 −
1

𝑐2
𝑐2𝑌2 − 1 = 𝐻0

2 −
1

4
 (37) 

 

the result is: 

𝑐2𝑌2 − 𝑌2 − 1 = 𝐻0
2 −

1

4
 (38) 

 

Or it can be further simplified to: 

𝑐2 − 1 = 𝐻0
2 −

1

4
 

𝑍2 − 𝑋2 − 𝑌2 = 𝐻0
2 −

1

4
 

(39) 

 

where, 

𝐻0 ≡ 2ℏΩℎ0 (40) 

 

so that 

ℎ0 =
1

2
(𝐴+𝐴 − 𝐵+𝐵) (41) 

 

The algebra described in Eq. 30-32 is sometimes denoted as QU(2) or O(2,1). While the angular 

momentum operators (𝐿𝑥), (𝐿𝑦) , (𝐿𝑧) satisfy Eq. 30, the corresponding equation analogous to Eq. 

31 has a negative sign on the right-hand side. For instance, [𝐿𝑧, 𝐿𝑦] = −𝑖𝐿𝑥. In analyzing the QU(2) 

algebra, states are usually labeled by the eigenvalues of (ℎ0), (
1

2
(4𝑛𝐴 − 𝑛𝐵) = 𝑗) and with the 

eigenvalues of (𝑍 −
1

2
), (𝑚 =

1

2
(𝑛𝐴 + 𝑛𝐵)) . The non-compact nature of this algebra is shown by the 

inequality 
1

2
(𝑛𝐴 + 𝑛𝐵) ≥

1

2
(𝑛𝐴 − 𝑛𝐵),  𝑚 ≥ |𝑗| (42) 

 

However, in the current context, we are more interested in the eigenvalues of ( 𝑌 ) compared to the 

eigenvalues of ( 𝑍 ) . To achieve this, we use the relation 
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[𝑒𝜇𝑋𝑌𝑒−𝜇𝑋 = 𝑌 cos 𝜇 + 𝑖𝑍 sin 𝜇] (43) 

 

which becomes 

[𝑒(𝜋/2)𝑋𝑌𝑒−(𝜋/2)𝑋 = 𝑖𝑍] (44) 

 

or equivalently 

𝑌 = 𝑖𝑒−(𝜋/2)𝑋𝑍𝑒(𝜋/2)𝑋 (45) 

 

Let the eigenstate of ( 𝑍 ) be denoted by ( |𝑗, 𝑚 > ) with eigenvalue (
1

2
(𝑛𝐴 + 𝑛𝐵 + 1) = 𝑚 +

1

2
).Then the eigenstate of \( Y \) is given by 𝑒−(𝜋/2)𝑋 |𝑗, 𝑚 >  : 

 

 

𝑌𝑒−(𝜋/2)𝑋 |𝑗, 𝑚 >  = 𝑖 (𝑚 +
1
2

|𝑗, 𝑚 >) (46) 

 

There exists a set of eigenstates and their corresponding eigenvalues 

𝑒−(π/2)𝑋𝑌𝑒(π/2)𝑋 = 𝑖𝑍 (47) 

 

Their eigenstates are 𝑒−(𝜋/2)𝑋 |𝑗, 𝑚 > : 

𝑌𝑒−(𝜋/2)𝑋 |𝑗, 𝑚 >  =  −𝑖 (𝑚 +
1
2

𝑒(π/2)𝑋|𝑗, 𝑚 >) 

 

The eigenvalues in both cases are purely imaginary. Furthermore, it can be demonstrated that ( 𝑚 ) 

has a minimum value, which is the same for the eigenstates from Eq. 36 and 38. This can be 

demonstrated using the traditional method as outlined in reference. The "lowering" operator is 
(𝑋 + 𝑍) as can be directly observed from Eq. 30 and 31, which gives 

[(𝑋 + 𝑍), 𝑌] = 𝑖(𝑋 + 𝑍) (48) 

 

If (ψ𝑖𝑚) is the eigenstate of ( 𝑌 ) with eigenvalue 𝑖 (𝑚 +
1

2
)), (𝑚 > 0), then 

𝑌(𝑋 + 𝑍)𝜓𝑖𝑚 = 𝑖 (𝑚 +
1

2
) (𝑋 + 𝑍)𝜓𝑖𝑚 

 
(49) 

When ( 𝑚 ) is reduced to one state eigenstate of ( 𝑌 ) with the least value of ( 𝑚 ) is ( 𝑀 ). Then it 

becomes 
(𝑋 + 𝑍)𝜓𝑖𝑚 = 0 (50) 

 

 

By multiplying (𝑍 − 𝑋) and using Eq. 32 and 33, the equation is obtained 

[𝑀2 = 𝑗2] (51) 

 

The lowest possible value for ( 𝑚 ) is (|𝑗|). The "raising" operator is ( 𝑋 −  𝑍 ). When applied to 

(ψ𝑖𝑚 > 0), the set of eigenstates satisfying Eq. 32 with an eigenvalue (−𝑖 (𝑚 +
1

2
)) results in the 

eigenstate of ( 𝑌 ) with eigenvalue (−𝑖 (𝑚 +
1

2
) + 𝑖)𝑜𝑟(−𝑖 (𝑚 −

1

2
)). The minimum value of \( m \) 

for this set of negative imaginary eigenvalues is also (|𝑗|). 
In essence, there exist two distinct sets of eigenstates: one exhibiting positive imaginary eigenvalues 

(𝑖 (𝑚 +
1

2
)), and the other featuring negative imaginary eigenvalues (−𝑖 (𝑚 +

1

2
)). In both scenarios, 

( 𝑚 ) is equal to (
1

2
(𝑛𝐴 + 𝑛𝐵)).The positive imaginary eigenvalues for positive ( 𝑗 ) are (𝑖 (𝑗 +

1

2
)), 

(𝑖 (𝑗 +
3

2
)), (𝑖 (𝑗 +

5

2
)), and so on, where (𝑗 =

1

2
(𝑛𝐴 + 𝑛𝐵)). Conversely, the negative ones are 
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(−𝑖 (𝑗 +
1

2
)) and subsequent values, forming a negative eigenvalue spectrum for positive ( 𝑗 ). 

Therefore, the eigenvalues of ( 𝐻 ) are given by 

2ℏΩ𝑗 ± 𝑖 (𝑚 +
1

2
) Γ = ℏΩ(𝑛𝐴 − 𝑛𝐵) ± 𝑖Γ(2𝑛𝐴 + 𝑛𝐵 + 1) (52) 

 

Eigenstates with negative eigenvalues represent decaying states, indicating a decrease in the 

corresponding physical quantities over time. Conversely, eigenstates with positive eigenvalues 

represent growing states, indicating an increase in the associated physical quantities. As anticipated 

from these observations, the set of states described by Eq. 38 represents the time reverse of the states 

given by Eq. 36. 

To elaborate further, when we consider time reversal, we observe that under this transformation, the 

eigenstates with negative eigenvalues in Eq.38 correspond to eigenstates with positive eigenvalues in 

Eq. 36, and vice versa. This symmetry in the eigenstates under time reversal highlights the dual nature 

of the system's behavior, where decaying states transform into gro 

 

[𝐴 ↔ −𝐴+] 
[𝐵 ↔ −𝐵+] 

(53) 

 

Subsequently, (𝐻0), ( 𝑋 ), and ( 𝑍 ) exhibit even behavior under time reversal, whereas 

( 𝑌 ) demonstrates odd behavior. Equation 38 is essentially the time-reversed version of the equation 

preceding Eq. 35. Upon applying the time reversal operation to Eq. 38 (indicated by the superscript 

T), we obtain 

[𝑌[𝑒−(𝜋/2)𝑋|𝑗, 𝑚 >]
𝑇

= 𝑖 (𝑚 +
1

2
) [𝑒−(𝜋/2)𝑋|𝑗, 𝑚 >]

𝑇
] (54) 

 

Compared to Eq. 38 

     𝑒^{(π/2)} 𝑋 |𝑗, 𝑚 >= [𝑒−(π/2)𝑋|𝑗, 𝑚 >]
𝑇
 (55) 

 

 

Time Dependence in a Damped Harmonic Oscillator 

 

The classical equation of motion for a damped harmonic oscillator with a general friction 

coefficient is shown in Eq. 1. We then consider the mass of the particle set to unity and only consider 

the special case where the friction coefficient and the system frequency decrease rationally. In this 

case, (γ(𝑡)) and (𝑤(𝑡))in the given equation become 

 

𝛾(𝑡) =
𝛾0

1 + 𝑞𝑡
,  𝑤(𝑡) =

𝑤0

1 + 𝑞𝑡
 (56) 

 

assuming (𝑞 >  0) and (γ0, 𝑤0) are positive constants. 

The corresponding quantum Hamiltonian for this equation is 

𝐻 =
𝑝2

2Γ(𝑡)
+

1

2
Γ(𝑡)𝑤2(𝑡)𝑥2 (57) 

 

with [𝑥, 𝑝] = 𝑖 we set ℏ =  1 and 

Γ(𝑡) = 𝑒∫ 𝛾(𝑠)𝑑𝑠
𝑡

0 = (1 + 𝑞𝑡)𝛾0/𝑞 (58) 

 

The Hamiltonian can be rewritten as 

𝐻 =
1

Γ(𝑡)
𝐽− + Γ(𝑡)𝑤2(𝑡)𝐽+ (59) 
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where 

 

𝐽+ =
1

2
𝑥2,  𝐽− =

1

2
𝑝2 (60) 

 

By introducing an additional operator 

𝐽0 =
𝑖

4
(𝑝𝑥 + 𝑥𝑝) (61) 

 

we form the su(2) algebra defined by 

 
[𝐽+, 𝐽−] = 2𝐽0,  [𝐽0, 𝐽±] = ±𝐽± (62) 

 

where we have 𝐽±
† = 𝐽±, 𝐽0

† = −𝐽0. The Hamiltonian that generates this equation is not unique. By 

setting 𝐻 = 𝐻−(𝑡)𝐽− − 𝑖𝐻0(𝑡)𝐽0 + 𝐻+(𝑡)𝐽+, we obtain this equation if the following relations are 

satisfied: 

𝐻−̇ = −𝛾(𝑡)𝐻−,  𝐻−𝐻+ −
1

4
𝐻0

2 −
1

2
𝐻0̇ −

1

2
𝛾(𝑡)𝐻0 = 𝑤2(𝑡) (63) 

 

For simplicity, throughout this paper we set 𝐻0 = 0 and then we have the previous Hamiltonian. 

To obtain the quantum mechanical solution of the time-dependent Hamiltonian system, it is easier 

to use the invariant operator. To investigate the system mechanically, we introduce the trial invariant 

operator as 

𝐼 = ℎ1(𝑡)𝐽+ + 𝑖ℎ2(𝑡)𝐽0 + ℎ3(𝑡)𝐽− (64) 

 

where (ℎ1, ℎ2, ℎ3) are real functions and (𝐼) is Hermitian. The invariant operator (𝐼) satisfies 
𝑑𝐼

𝑑𝑡
=

𝜕𝐼

𝜕𝑡
+ 𝑖[𝐻, 𝐼] = 0 (65) 

 

By substituting this equation into the invariant equation, we obtain 

ℎ1̇ = −Γ𝑤2ℎ2, 

ℎ2̇ =
2

Γ
ℎ1 − 2Γ𝑤2ℎ3, 

ℎ3̇ =
1

Γ
ℎ2. 

 

(66) 

 

If we assume a particular form for ℎ1(𝑡), ℎ2(𝑡), and ℎ3(𝑡) as 

ℎ1(𝑡) = 𝛼(1 + 𝑞𝑡)𝐴,  ℎ2(𝑡) = 𝛽(1 + 𝑞𝑡)𝐵,  ℎ3(𝑡) = 𝛾(1 + 𝑞𝑡)𝐶 (67) 

 

we obtain the following equations 

 

𝛼𝑞𝐴 + 𝛽𝑤0
2 = 0,  𝛽 − 𝛾𝑞𝐶 = 0,  𝑞𝛽𝐵 = 2𝛼 − 2𝑤0

2𝛾 

𝐴 =
𝛾0

𝑞
+ 𝐵 − 1,  𝐶 = 𝐵 + 1 −

𝛾0

𝑞
. 

 

(68) 

We then transform the invariant equation with the appropriate unitary operator 𝑈 as 

𝐼′ = 𝑈𝐼𝑈† (69) 

 

by choosing 𝑈 as 

𝑈 = 𝑈2𝑈1 = 𝑒𝑘2(𝑡)𝐽0𝑒𝑖𝑘1(𝑡)𝐽+ (70) 
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By choosing 𝑘1 and 𝑘2(𝑡) as 

 

𝑘1 = −
ℎ2

2ℎ3
,  𝑒−𝑘2(𝑡) =

1

𝛾
(1 + 𝑞𝑡)−𝐶 (71) 

 

we obtain the transformed invariant 

𝐼′ =
𝑝2

2
+

1

2
(𝛼 −

𝛽2

4𝛾
) 𝛾(1 + 𝑞𝑡)𝐴+𝐶𝑥2 (72) 

 

From the fact that both 𝐼 and 𝐼′ are time invariants, we know that 𝐴 +  𝐶 =  0. If we choose γ =
 1, we get 

ℎ1 = 𝑤0
2(1 + 𝑞𝑡)−1+𝛾0/𝑞,  ℎ2 = 𝑞 − 𝛾0,  ℎ3 = (1 + 𝑞𝑡)1−𝛾0/𝑞 (73) 

 

and the transformed invariant becomes 

𝐼′ =
𝑝2

2
+

1

2
𝑤1

2𝑥2 (74) 

 

where 

𝑤1
2 = 𝑤0

2 −
1

4
(𝑞 − 𝛾0)2 (75) 

 

The eigenvalue equation for 𝐼' is 

𝐼′|𝑛, 𝑡⟩′ = 𝑤1 (𝑛 +
1

2
) |𝑛, 𝑡⟩′,  𝑛 = 0,1,2, (76) 

 

Using the basis |𝑥⟩, we get the wave solution 

⟨𝑥|𝑛, 𝑡⟩′ = (
𝑤1

𝜋
)

1/4 1

√2𝑛𝑛!
𝐻𝑛(√𝑤1𝑥)𝑒−

1
2

𝑤1𝑥2

 (77) 

 

where 𝐻𝑛(𝑥) is the Hermite polynomial of order n. With the transformation |𝑛, 𝑡⟩ = 𝑈†|𝑛, 𝑡⟩′, we get 

𝐼|𝑛, 𝑡⟩ = 𝑤1 (𝑛 +
1

2
) |𝑛, 𝑡⟩,  𝑛 = 0,1,2, (78) 

 

and the wave function 

⟨𝑥|𝑛, 𝑡⟩ = (
𝑤1𝑤0

2

𝜋ℎ1(𝑡)
)

1/4

𝐻𝑛 (√
𝑤1𝑤0

2

ℎ1(𝑡)
𝑥) exp [−

𝑤0
2

2ℎ1(𝑡)
(𝑤1 − 𝑖

𝛾0 − 𝑞

2𝑤0
2 ℎ1(𝑡)) 𝑥2] 

 

(79) 

 

The step operator is expressed as 

 

𝑎(𝑡) = √
𝑤1ℎ1

2𝑤0
2 (1 − 𝑖

ℎ2

2𝑤1
) 𝑥 + 𝑖√

𝑤0
2

2𝑤1ℎ1
𝑝 

𝑎†(𝑡) = √
𝑤1ℎ1

2𝑤0
2 (1 + 𝑖

ℎ2

2𝑤1
) 𝑥 − 𝑖√

𝑤0
2

2𝑤1ℎ1
𝑝 

 

(80) 
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and the invariant is expressed as 

𝐼(𝑡) =
𝑤1

2
[𝑎\𝑑𝑎𝑔𝑔𝑒𝑟(𝑡)𝑎(𝑡) +

1

2
]. (81) 

 

The Fock space representation of the step operator is 

 

𝑎(𝑡)|𝑛, 𝑡⟩ = √𝑛|𝑛 − 1, 𝑡⟩, 

𝑎†(𝑡)|𝑛, 𝑡⟩ = √𝑛 + 1|𝑛 + 1, 𝑡⟩. 
(82) 

 

By expressing the position and momentum operators in terms of the step operator, we get 

 

𝑥 = √
𝑤0

2

2𝑤1ℎ1

[𝑎(𝑡) + 𝑎†(𝑡)], 

𝑝 = 𝑖√
ℎ1

2𝑤0
2𝑤1

[(𝑤1 + 𝑖
ℎ2

2
) 𝑎(𝑡) − (𝑤1 − 𝑖

ℎ2

2
) 𝑎†(𝑡)]. 

 

(83) 

The time-dependent wave function for the given Hamiltonian then takes the form 

|𝜓𝑛(𝑡)⟩ = |𝑛, 𝑡⟩𝑒𝑖𝛾𝑛(𝑡), (84) 

 

with the phase 

𝛾𝑛(𝑡) = −
𝑤0

2

𝑞𝑤1
(𝑛 +

1

2
) ln(1 + 𝑞𝑡) (85) 

 

Therefore, the time-dependent wave function for the Hamiltonian is 

 

⟨𝑥|𝜓𝑛(𝑡)⟩ = (
𝑤1𝑤0

2

𝜋ℎ1(𝑡)
)

1/4

𝐻𝑛 (√
𝑤1𝑤0

2

ℎ1(𝑡)
𝑥) exp [−

𝑤0
2

2ℎ1(𝑡)
(𝑤1

− 𝑖
𝛾0 − 𝑞

2𝑤0
2 ℎ1(𝑡)) 𝑥2] 𝑒

−𝑖
𝑤0

2

𝑤1
(𝑛+1/2) ln(1+𝑞𝑡)

 

(86) 

 

IV. CONCLUSION 

In this article, we explored the damped quantum harmonic oscillator, comparing classical and 

quantum mechanics. We reviewed how damping causes energy loss in classical systems, then 

examined the quantum case using the Schrödinger equation. By deriving the Hamiltonian and using 

annihilation and creation operators, we analyzed the system's eigenstates and time evolution. We 

showed that, unlike classical systems, the quantum oscillator reaches a steady state with reduced 

amplitude. This study highlights key differences between classical and quantum behaviors, enriching 

our understanding of quantum mechanics and illustrating its profound principles. 
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