Main Article Content
Abstract
Rotan merupakan salah satu produk hutan utama, dengan ketersedian yang cukup berlimpah. Struktur rotan yang terdiri dari gugus polimer (selulosa, hemiselulosa dan lignin) menjadikan rotan berpotensi sebagai karbon aktif. Pemanfaatan rotan sebagai karbon aktif adalah upaya untuk mengkonversi bahan biomassa menjadi produk bernilai ekonomi. Tujuan dari penelitian ini adalah untuk menghasilkan karbon aktif monolit tanpa bahan perekat sebagai elektroda superkapasitor. Bahan baku rotan dikonversi menjadi karbon aktif monolit melalui proses karbonisasi (N2, 600 oC) dan aktivasi fisika (CO2, 850 oC) yang terintegrasi. Kemampuan karbon aktif monolit rotan sebagai elektroda superkapasitor ditinjau melalui sifat elektrokimia menggunakan cyclic voltammetric (CV). Penelitian ini berhasil mengubah rotan menjadi elektroda karbon aktif monolit tanpa bahan perekat, dengan kemampuan elektrokimia sebesar 104 F g-1 dengan laju pemindaian 1 mV s-1, menggunakan konfigurasi elektroda lapisan ganda dengan elektrolit 1 M H2SO4. Elektroda karbon aktif monolit rotan juga menunjukkan densitas sebesar 1,04 g cm-3, yang menunjukkan potensi kehadiran struktur pori yang baik.
Keywords
Article Details
Copyright (c) 2023 Widya Sinta Mustika Widya, Erman Taer, Apriwandi, Agustino, Rika Taslim

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- T. Kalima, Jasni, Research and development priority of local important rattan species, Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, vol. 1, hal. 1868–1876, 2015, doi: 10.13057/psnmbi/m0108220.
- B.D.S. Bayu, Sulaeman, M.A.A. Laihi, Analisis pendapatan dan kelayakan usaha rotan pada industri meubel “Subur” di kelurahan Ujuna kecamatan Palu Barat Kota Palu, Agrotekbis, vol. 10, no. 5, hal.719–726, 2022
- D. Septiasari, A.S. Alam, I. Rachman, Ariyanti, Anwar, Pemanfaatan rotan (Calamus sp) oleh masyarakat di desa bangga kecamatan Dolo Selatan kabupaten Sigi,War. Rimba J. Ilm. Kehutan, vol. 10, hal.38–43, 2020
- N.S. Sinurat, A. Iskandar, S. Rifanjani, Pemanfaatan Rotan Oleh Masyarakat Desa menyabo Kecamatan tayan Hulu Kabupaten Sanggau, J. Hutan Lestari, vol. 7, hal. 1303–1312, 2011
- Dinna Alief Nugrahani, Pengembangan desain produk lampu hias berbasis material rotan, Tesis Dep. Desain Prod. Fak. Arsit. Desain Dan Perenc. Inst. Teknol. Sepuluh Nop. 2015.
- Syahrun Nur, Murniana, Marliana, Pemanfaatan Rotan sebagai souvenir Khas Sabang dalam Usaha Meningkatkan Perekonomian Masyarakat, J. Ekon. Dan Bisnis, vol.18, hal. 162–166, 2017
- X. Yang, L. Kong, M. Cao, X. Liu, X. Li, Porous nanosheets-based carbon aerogel derived from sustainable rattan for supercapacitors application, Ind. Crops Prod., vol. 145, hal. 112100, -2020- , doi:10.1016/j.indcrop.2020.112100.
- P.O. Ibeh, J.M. Rosas, T. Cordero, Activated carbon monoliths from lignocellulosic biomass waste for electrochemical applications, J. Taiwan Inst. Chem. Eng., vol. 97, hal. 480-488, -2019-, doi:10.1016/j.jtice.2019.02.019.
- M. Danish, T. Ahmad, A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application, , vol. 87,hal. 1–21, 2018, doi:10.1016/j.rser.2018.02.003.
- E. Taer, L. Pratiwi, W. Sinta, R. Taslim, Three-dimensional pore structure of activated carbon monolithic derived from hierarchically bamboo stem for supercapacitor application, Communications in Science and Technology, vol. 5, hal. 22–30, 2020, doi: 10.21924/cst.5.1.2020.180
- G. Zhang, Y. Chen, Y. Chen, H. Guo, Activated biomass carbon made from bamboo as electrode material for supercapacitors, , vol. 102, hal. 391–398, 2018, doi:10.1016/j.materresbull.2018.03.006.
- E. Taer, R. Taslim, Sugianto, M. Paiszal, Mukhlis, W.S. Mustika, Agustino, Meso-and microporous carbon electrode and its effect on the capacitive, energy and power properties of supercapacitor, Int. J. Power Electron. Drive Syst., vol. 9, no. 3, hal. 1263-1271, -2018, doi:10.11591/ijpeds.v9n3.pp1263-1271.
- B. Kucharczyková, H. Šimonová, P. Dan, D. Kocáb, P. Misák, P. Petr, Evaluation of Shrinkage , Mass Changes and Fracture Properties of Fine-aggregate Cement-based Composites during Ageing, Procedia Eng. vol. 190, hal. 357–364, 2017, doi:10.1016/j.proeng.2017.05.349.
- C. Romero-rangel, A. Guillén-lópez, L.M. Mejía-mendoza, M. Robles, N.D. Espinosa-torres, J. Muñiz, Approaches on the understanding of nanoporous carbon reactivity with polyatomic ions, Appl. Surf. Sci., vol. 495, hal. 143392, 2019, doi:10.1016/j.apsusc.2019.07.134.
- T. Li, R. Ma, J. Lin, Y. Hu, P. Zhang, S. Sun, L. Fang, The synthesis and performance analysis of various biomass-based carbon materials for electric double-layer capacitors: A review, Int. J. Energy Res., vol. 44, hal. 2426–2454, 2020, doi: 10.1002/er.5061.
- Z. Qiu, Y. Wang, X. Bi, T. Zhou, J. Zhou, J. Zhao, Z. Miao, W. Yi, P. Fu, S. Zhuo, Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors, J. Power Sources, vol. 376, hal 82–90, 2018, doi: 10.1016/j.jpowsour.2017.11.077.
References
T. Kalima, Jasni, Research and development priority of local important rattan species, Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, vol. 1, hal. 1868–1876, 2015, doi: 10.13057/psnmbi/m0108220.
B.D.S. Bayu, Sulaeman, M.A.A. Laihi, Analisis pendapatan dan kelayakan usaha rotan pada industri meubel “Subur” di kelurahan Ujuna kecamatan Palu Barat Kota Palu, Agrotekbis, vol. 10, no. 5, hal.719–726, 2022
D. Septiasari, A.S. Alam, I. Rachman, Ariyanti, Anwar, Pemanfaatan rotan (Calamus sp) oleh masyarakat di desa bangga kecamatan Dolo Selatan kabupaten Sigi,War. Rimba J. Ilm. Kehutan, vol. 10, hal.38–43, 2020
N.S. Sinurat, A. Iskandar, S. Rifanjani, Pemanfaatan Rotan Oleh Masyarakat Desa menyabo Kecamatan tayan Hulu Kabupaten Sanggau, J. Hutan Lestari, vol. 7, hal. 1303–1312, 2011
Dinna Alief Nugrahani, Pengembangan desain produk lampu hias berbasis material rotan, Tesis Dep. Desain Prod. Fak. Arsit. Desain Dan Perenc. Inst. Teknol. Sepuluh Nop. 2015.
Syahrun Nur, Murniana, Marliana, Pemanfaatan Rotan sebagai souvenir Khas Sabang dalam Usaha Meningkatkan Perekonomian Masyarakat, J. Ekon. Dan Bisnis, vol.18, hal. 162–166, 2017
X. Yang, L. Kong, M. Cao, X. Liu, X. Li, Porous nanosheets-based carbon aerogel derived from sustainable rattan for supercapacitors application, Ind. Crops Prod., vol. 145, hal. 112100, -2020- , doi:10.1016/j.indcrop.2020.112100.
P.O. Ibeh, J.M. Rosas, T. Cordero, Activated carbon monoliths from lignocellulosic biomass waste for electrochemical applications, J. Taiwan Inst. Chem. Eng., vol. 97, hal. 480-488, -2019-, doi:10.1016/j.jtice.2019.02.019.
M. Danish, T. Ahmad, A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application, , vol. 87,hal. 1–21, 2018, doi:10.1016/j.rser.2018.02.003.
E. Taer, L. Pratiwi, W. Sinta, R. Taslim, Three-dimensional pore structure of activated carbon monolithic derived from hierarchically bamboo stem for supercapacitor application, Communications in Science and Technology, vol. 5, hal. 22–30, 2020, doi: 10.21924/cst.5.1.2020.180
G. Zhang, Y. Chen, Y. Chen, H. Guo, Activated biomass carbon made from bamboo as electrode material for supercapacitors, , vol. 102, hal. 391–398, 2018, doi:10.1016/j.materresbull.2018.03.006.
E. Taer, R. Taslim, Sugianto, M. Paiszal, Mukhlis, W.S. Mustika, Agustino, Meso-and microporous carbon electrode and its effect on the capacitive, energy and power properties of supercapacitor, Int. J. Power Electron. Drive Syst., vol. 9, no. 3, hal. 1263-1271, -2018, doi:10.11591/ijpeds.v9n3.pp1263-1271.
B. Kucharczyková, H. Šimonová, P. Dan, D. Kocáb, P. Misák, P. Petr, Evaluation of Shrinkage , Mass Changes and Fracture Properties of Fine-aggregate Cement-based Composites during Ageing, Procedia Eng. vol. 190, hal. 357–364, 2017, doi:10.1016/j.proeng.2017.05.349.
C. Romero-rangel, A. Guillén-lópez, L.M. Mejía-mendoza, M. Robles, N.D. Espinosa-torres, J. Muñiz, Approaches on the understanding of nanoporous carbon reactivity with polyatomic ions, Appl. Surf. Sci., vol. 495, hal. 143392, 2019, doi:10.1016/j.apsusc.2019.07.134.
T. Li, R. Ma, J. Lin, Y. Hu, P. Zhang, S. Sun, L. Fang, The synthesis and performance analysis of various biomass-based carbon materials for electric double-layer capacitors: A review, Int. J. Energy Res., vol. 44, hal. 2426–2454, 2020, doi: 10.1002/er.5061.
Z. Qiu, Y. Wang, X. Bi, T. Zhou, J. Zhou, J. Zhao, Z. Miao, W. Yi, P. Fu, S. Zhuo, Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors, J. Power Sources, vol. 376, hal 82–90, 2018, doi: 10.1016/j.jpowsour.2017.11.077.