Main Article Content

Abstract

Karst areas contain limestone lithology that is easily dissolved by water, so rainwater can accelerate the process of dissolving rocks below the surface and forming cavities. The hydrological system of the Pindul area has a conduit flow karst aquifer type. The components of conduit flow are open channels and pipe-like passages that have various shapes. The distribution and direction of conduit flow control the Pindul Cave karst aquifer system in Gunung Kidul. The wenner configuration resistivity geoelectric method can determine the presence of a subsurface—conduit flow in karst areas by knowing the difference in rock-specific resistance values. Resistivity geoelectric measurements were carried out using 8 tracks with each track length of 200 meters. The results of data processing and interpretation of the resistivity cross-section show the presence of conduit flow in 5 passes with a resistivity value of 0.174-25 Ωm. The results of the study can provide an overview to determine the subsurface river area.

Keywords

aquifer conduit Geoelectric Resistivity karst wenner

Article Details

How to Cite
Surya, B. S. U., & Reva Anindya, S. (2023). Pendugaan Aliran Conduit Sistem Akuifer Kawasan Karst Gua Pindul Gunung Kidul Menggunakan Metode Geolistrik Konfigurasi Wenner. Newton-Maxwell Journal of Physics, 4(1), 28–35. https://doi.org/10.33369/nmj.v4i1.27034

References

  1. N. Kresic, “Water in Karst: Management, Vulnerability and Restoration”. New York, Mc Graw Hill, 2013.
  2. W.B. White, “Geomorphology and Hydrology of Karst Terrains”. New York, Oxford University Press, 1988.
  3. A. Cahyadi, B.A. Prabawa, T.A. Tivianton, H. Nugraha, “Ekologi Lingkungan Kawasan Karst Indonesia : Menjaga Asa Kelestarian Kawasan Karst Indonesia”, Volume 2. Yogyakarta, Deepublish, 2014.
  4. D. Gillieson, “Caves: Processes, Development and Management”. Oxford, Blackwell, 1996.
  5. M. Widyastuti, A. Cahyadi, M.H.D. Sasongko, “Hidrologi dan Hidrogeologi Karst”, in “Pedoman Praktis Survei Terintegrasi Kawasan Karst”, E. Haryono, Yogyakarta : Badan Penerbit Fakultas Geografi (BPFG) Universitas Gadjah Mada, 2016 pp. 20-43.
  6. R. F. Agniy, “Kajian Hidrogeologi Karst Sistem Gua Pindul, Kecamatan Karangmojo, Kabupaten Gunungkidul”, Skripsi, Fakultas Geografi, Universitas Gajah Mada, Yogyakarta, 2016.
  7. W. Rahardjo, “Peta Geologi Lembar Yogyakarta”. Bandung, Pusat Penelitian dan Pengembangan Geologi, 1995.
  8. W.S. Giamboro, P. Pratiknyo, A. Novianto, L.N. Utami, “Analisa Persebaran Wetland Berdasarkan Metode Geolistrik di Kecamatan Pandak, Kab. Bantul, DIY”, JURNAL MINERAL, ENERGI DAN LINGKUNGAN, vol. 4, no. 2, pp 1-8, Desember, 2020.
  9. A. P. Setiahadiwibowo, “Identifikasi Rongga Menggunakan Metode Geolistrik Konfigurasi Dipole-Dipole Daerah Nusakambangan Cilacap Jawa Tengah”, KURVATEK, vol. 5, no. 2, pp 47-54, November, 2020.
  10. W. M. Telford, L.P. Geldart, R.E. Sheriff, Applied Geophysics, Second Edi. Cambridge, Cambridge University Press, 1990.
  11. H.R. Burger, A.F. Sheehan, C. Jones, Introduction to Applied Geophysics Exploring The Shallow Subsurface. New York, W. W. Norton, 2004.
  12. P.V. Sharma, Environmental an Engineering Geophysics. Cambridge, Cambridge University Press, 1997.
  13. M.F. Zakaria, Buku Panduan Praktikum Geolistrik. Yogyakarta, Laboratorium Geolistrik Teknik Geofisika UPN “Veteran” Yogyakarta, 2020.
  14. A. Santoso, Buku Panduan Praktikum Geolistrik. Yogyakarta, Laboratorium Geolistrik Teknik Geofisika UPN “Veteran” Yogyakarta, 2015.
  15. B. Fahmi, F.A. Prihutama, N. Arasyi, F.R. Wijaya, A.R. Isdianty, N.F. Ramadhani, “Identifikasi Sistem Sungai Bawah Tanah di Goa Pindul, Gunungkidul, Yogyakarta Menggunakan Kombinasi Data Geolistrik Resistivitas, Elektromagnetik VLF, dan Pemetaan Sistem Sungai Bawah Tanah”, SNITT Politeknik Negeri Balikpapan, vol. 2, no. 5, pp 33-37, Oktober, 2017.
  16. D. Ford, P. Williams, Karst Geomorphology and Hydrology. London, Chapman and Hall, 1992