Main Article Content

Abstract

This research aims to obtain the temperature performance of heat convection from hot water flow in pipes in the drying chamber during the drying process. This research method descriptively examines the drying function and the hot air flow process in the drying system. The results obtained from the research show that the average temperature in the drying room is 37oC while the temperature outside the dryer (environmental temperature) is 22oC. To dry 2 mm thick cassava slices from an ingredient weight of 23 g to 8 g, it takes 8-10 hours. The longer the drying time, the lower the moisture ratio value. An increase in temperature affects a decrease in the moisture ratio in geothermal hot water flow dryer. The decrease in the moisture ratio value was influenced by the decrease in the water content of the material during the drying process. The distribution of temperature movements that occur in the drying room at the beginning of the drying process where the room temperature moves turbulensitly from 30.8 - 35.1oC. During the drying process, the movement of heat distribution shows the active phenomenon of a convection heat source from the side of the drying chamber which is a spiral-shaped heating design around the drying chamber. The constant temperature is 36 – 38oC which is the hottest temperature that is almost uniform in the drying room. The use of hot water energy from geothermal hot springs can be an alternative continuous and hygienic drying process

Keywords

dryer, geothermal, heat convection, heat distribution, hot water, moisture ratio

Article Details

How to Cite
Gunawan, Y., Intara, Y. I., Sidebang, B., & Anis, U. (2024). Kajian Pengeringan Pada Pengering Tipe Rak Dengan Konveksi Panas Dari Pipa Yang Dialiri Air Panas Geothermal. Newton-Maxwell Journal of Physics, 5(1), 7–18. https://doi.org/10.33369/nmj.v5i1.33301

References

  1. A. P. dan D. W. Al-Kindi, H., “Analisis CFD Aliran Udara Panas pada Pengering Tipe Rak dengan Sumber Energi Gas Buang,” vol. 3, no. 1, pp. 9–16, 2015.
  2. I. A. Ramli, S. Yanto, and Jamaluddin, “Laju Pengeringan Gabah Menggunakan Pengering Tipe Efek Rumah Kaca (ERK),” J. Pendidik. Teknol. Pertan., vol. 3, pp. 158–164, 2017.
  3. B. L. Sri Rezeky Meylani Nainggolan1, Tamrin2, Warji3, “Uji Kinerja Alat Pengering Tipe Batch Skala Lab Untuk Pengeringan Gabah Dengan Menggunakan Bahan Bakar Sekam,” vol. 2, no. 3, pp. 161–172, 2013.
  4. L. P. Mahardhika, S. P. Lestari, Y. Bow, S. Pengajar, T. Energi, and P. Negeri, “Rancang Bangun Alat Pengering Tipe Tray Dengan Media Udara Panas Ditinjau dari Lama Waktu Pengeringan Terhadap Exergi Pada Alat Heat Exchanger,” vol. 7, pp. 5–9, 2016.
  5. Y.Yuwana, “Model Kurva dan Pendugaan Lama Waktu Pengeringan Tandan Kosong, Pelepah dan Serat Tandan Kosong Kelapa Sawit,” vol. 12, no. 1, pp. 16–28, 2018.
  6. Marzona, “Performasi Mesin Pengering Jagung Tipe Vertikal Kontinyu dengan Aliran Udara Panas Berlawanan Skala Pilot,” Fak. Teknol. Pangan dan Agroidustri Univ. Mataram, pp. 1–23, 2014.
  7. Nurdahlia, “Pengering Hybrid Tipe Rak,” Fak. Teknol. Pangan dan Agroindustri Univ. Mataram, pp. 1–15, 2015.
  8. N. Asiah, R. Sembodo, and A. Prasetyaningum, “Aplikasi Metode Foam-Mat Drying pada Proses Pengeringan Spirulina,” J. Teknol. Kim. dan Ind., vol. 1, no. 1, pp. 461–467, 2012.
  9. H. A., Sitompul, & Sianturi, T. A. Interpolasi Data Berdimensi d > 1 dengan Fungsi Basis Radial (Radial Basis Function / RBF ), Jurnal Darma Agung, 28(1), 1–7. 2020