Main Article Content
Abstract
Penelitian ini menginvestigasi gerak partikel bermuatan dalam medan magnet melalui pendekatan numerik menggunakan metode Euler, serta implementasinya dalam simulasi berbasis web untuk tujuan edukasi. Penelitian sebelumnya telah menunjukkan bahwa pelajar mengalami kesulitan memahami konsep ini karena bersifat abstrak dan tidak intuitif secara visual. Dibandingkan metode lain seperti Runge-Kutta, metode Euler dipilih karena kalkulasinya yang lebih sederhana. Partikel bermuatan yang bergerak dalam medan magnet mengalami gaya Lorentz yang menyebabkan lintasan melingkar. Simulasi dikembangkan menggunakan pustaka P5.js, memungkinkan visualisasi dinamis gerak partikel. Hasil simulasi menunjukkan bahwa kesalahan integrasi meningkat dengan langkah waktu yang lebih besar, tetapi dapat diminimalkan dengan langkah yang lebih kecil. Pemilihan langkah waktu yang tepat diperlukan untuk menjaga akurasi visualisasi agar tidak terjadi kesalahan interpretasi. Integrasi simulasi ke dalam game edukasi berbasis web menunjukkan potensi sebagai alat bantu interaktif untuk pemahaman lebih mendalam tentang medan magnet dan gaya Lorentz.
Keywords
Article Details
Copyright (c) 2024 Casmika Saputra, Rahmat Awaludin Salam, Akhmadi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- Y. Wu and S. Şahin, “3.13 Fusion Energy Production,” in Comprehensive Energy Systems, I. Dincer, Ed., Oxford: Elsevier, 2018, pp. 538–589. doi: https://doi.org/10.1016/B978-0-12-809597-3.00330-8.
- J. A. Bittencourt, “Charged Particle Motion in Time-Varying Electromagnetic Fields,” in Fundamentals of Plasma Physics, J. A. Bittencourt, Ed., New York, NY: Springer New York, 2004, pp. 95–121. doi: 10.1007/978-1-4757-4030-1_4.
- J. B. Westgard, “Particle Motion in Electromagnetic Fields,” in Electrodynamics: A Concise Introduction, J. B. Westgard, Ed., New York, NY: Springer New York, 1997, pp. 311–348. doi: 10.1007/978-1-4612-2356-6_7.
- S. U. Khan, U. Uktamov, J. Rayimbaev, A. Abdujabbarov, I. Ibragimov, and Z.-M. Chen, “Circular orbits and collisions of particles with magnetic dipole moment near magnetized Kerr black holes in modified gravity,” The European Physical Journal C, vol. 84, no. 2, p. 203, 2024, doi: 10.1140/epjc/s10052-024-12567-2.
- R. L. Liboff, “Brownian Motion of Charged Particles in Crossed Electric and Magnetic Fields,” Physical Review, vol. 141, no. 1, pp. 222–227, Jan. 1966, doi: 10.1103/PhysRev.141.222.
- J. G. A. Guzmán, V. Florinski, G. Tóth, S. Sharma, B. van der Holst, and M. Opher, “Numerical Modeling of Energetic Charged-particle Transport with SPECTRUM Software: General Approach and Artificial Effects due to Field Discretization,” Astrophys J Suppl Ser, vol. 272, no. 2, p. 46, 2024, doi: 10.3847/1538-4365/ad4637.
- P. K. Soni, B. Kakad, and A. Kakad, “Simulation study of motion of charged particles trapped in Earth’s magnetosphere,” Advances in Space Research, vol. 67, no. 2, pp. 749–761, 2021, doi: https://doi.org/10.1016/j.asr.2020.10.020.
- F. Sciortino et al., “Modeling of particle transport, neutrals and radiation in magnetically-confined plasmas with Aurora,” Plasma Phys Control Fusion, vol. 63, no. 11, p. 112001, 2021, doi: 10.1088/1361-6587/ac2890.
- R. Van Durme, G. Crevecoeur, L. Dupré, and A. Coene, “Model-based optimized steering and focusing of local magnetic particle concentrations for targeted drug delivery,” Drug Deliv, vol. 28, no. 1, pp. 63–76, Jan. 2021, doi: 10.1080/10717544.2020.1853281.
- M. Borghei, M. Ghassemi, J. M. Rodríguez-Serna, and R. Albarracín-Sánchez, “A Finite Element Analysis and an Improved Induced Charge Concept for Partial Discharge Modeling,” IEEE Transactions on Power Delivery, vol. 36, no. 4, pp. 2570–2581, 2021, doi: 10.1109/TPWRD.2020.2991589.
- “p5.js.” Accessed: Jul. 30, 2024. [Online]. Available: https://p5js.org/
- T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick, “Comparing Numerical Methods for Ordinary Differential Equations,” SIAM J Numer Anal, vol. 9, no. 4, pp. 603–637, 1972, [Online]. Available: http://www.jstor.org/stable/2156215
- R. Gomes Mendonça Neves, J. L. Schwartz, J. Carvalho Silva, and V. Duarte Teodoro, Learning introductory physics with computational modelling and interactive environments. 2012. [Online]. Available: https://www.researchgate.net/publication/235354433
- M. Ben Ouahi, D. Lamri, T. Hassouni, and E. M. Al Ibrahmi, “Science teachers’ views on the use and effectiveness of interactive simulations in science teaching and learning,” International Journal of Instruction, vol. 15, no. 1, pp. 277–292, Jan. 2022, doi: 10.29333/iji.2022.15116a.
References
Y. Wu and S. Şahin, “3.13 Fusion Energy Production,” in Comprehensive Energy Systems, I. Dincer, Ed., Oxford: Elsevier, 2018, pp. 538–589. doi: https://doi.org/10.1016/B978-0-12-809597-3.00330-8.
J. A. Bittencourt, “Charged Particle Motion in Time-Varying Electromagnetic Fields,” in Fundamentals of Plasma Physics, J. A. Bittencourt, Ed., New York, NY: Springer New York, 2004, pp. 95–121. doi: 10.1007/978-1-4757-4030-1_4.
J. B. Westgard, “Particle Motion in Electromagnetic Fields,” in Electrodynamics: A Concise Introduction, J. B. Westgard, Ed., New York, NY: Springer New York, 1997, pp. 311–348. doi: 10.1007/978-1-4612-2356-6_7.
S. U. Khan, U. Uktamov, J. Rayimbaev, A. Abdujabbarov, I. Ibragimov, and Z.-M. Chen, “Circular orbits and collisions of particles with magnetic dipole moment near magnetized Kerr black holes in modified gravity,” The European Physical Journal C, vol. 84, no. 2, p. 203, 2024, doi: 10.1140/epjc/s10052-024-12567-2.
R. L. Liboff, “Brownian Motion of Charged Particles in Crossed Electric and Magnetic Fields,” Physical Review, vol. 141, no. 1, pp. 222–227, Jan. 1966, doi: 10.1103/PhysRev.141.222.
J. G. A. Guzmán, V. Florinski, G. Tóth, S. Sharma, B. van der Holst, and M. Opher, “Numerical Modeling of Energetic Charged-particle Transport with SPECTRUM Software: General Approach and Artificial Effects due to Field Discretization,” Astrophys J Suppl Ser, vol. 272, no. 2, p. 46, 2024, doi: 10.3847/1538-4365/ad4637.
P. K. Soni, B. Kakad, and A. Kakad, “Simulation study of motion of charged particles trapped in Earth’s magnetosphere,” Advances in Space Research, vol. 67, no. 2, pp. 749–761, 2021, doi: https://doi.org/10.1016/j.asr.2020.10.020.
F. Sciortino et al., “Modeling of particle transport, neutrals and radiation in magnetically-confined plasmas with Aurora,” Plasma Phys Control Fusion, vol. 63, no. 11, p. 112001, 2021, doi: 10.1088/1361-6587/ac2890.
R. Van Durme, G. Crevecoeur, L. Dupré, and A. Coene, “Model-based optimized steering and focusing of local magnetic particle concentrations for targeted drug delivery,” Drug Deliv, vol. 28, no. 1, pp. 63–76, Jan. 2021, doi: 10.1080/10717544.2020.1853281.
M. Borghei, M. Ghassemi, J. M. Rodríguez-Serna, and R. Albarracín-Sánchez, “A Finite Element Analysis and an Improved Induced Charge Concept for Partial Discharge Modeling,” IEEE Transactions on Power Delivery, vol. 36, no. 4, pp. 2570–2581, 2021, doi: 10.1109/TPWRD.2020.2991589.
“p5.js.” Accessed: Jul. 30, 2024. [Online]. Available: https://p5js.org/
T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick, “Comparing Numerical Methods for Ordinary Differential Equations,” SIAM J Numer Anal, vol. 9, no. 4, pp. 603–637, 1972, [Online]. Available: http://www.jstor.org/stable/2156215
R. Gomes Mendonça Neves, J. L. Schwartz, J. Carvalho Silva, and V. Duarte Teodoro, Learning introductory physics with computational modelling and interactive environments. 2012. [Online]. Available: https://www.researchgate.net/publication/235354433
M. Ben Ouahi, D. Lamri, T. Hassouni, and E. M. Al Ibrahmi, “Science teachers’ views on the use and effectiveness of interactive simulations in science teaching and learning,” International Journal of Instruction, vol. 15, no. 1, pp. 277–292, Jan. 2022, doi: 10.29333/iji.2022.15116a.