Main Article Content

Abstract









The charging speed of lithium-ion batteries depends on the applied current, with higher currents resulting in faster charging.  However, higher currents can increase the surface temperature, potentially damaging components or causing safety hazards. This study measured the surface temperature of lithium-ion batteries using the DS18B20 sensor. The TP4056 module was used for currents of 880.9 mA, 982.30 mA, and 1134.40 mA, while the TP5100 module was used for a current of 1323.80 mA. Charging at 1328.38 mA required the shortest time, approximately 3-4 hours. Temperature measurements showed no significant increase across the range of 880.0-1328.38 mA. For 982.30 mA, the first and second measurements recorded maximum temperatures of 34.4 °C and 36.2 °C, respectively. In the third measurement at 1328.38 mA, the maximum temperature reached 35.5 °C. Overall, the temperature variations remained below the maximum safe limit for lithium-ion battery charging.









Keywords

current variation temperature lithium-ion battery TP4056 TP5100

Article Details

How to Cite
Refly, S., Putra, G. R. M., & Kusuma, H. A. (2025). Pengisian Baterai Ion Litium dengan Variasi Arus Menggunakan Modul TP4056 dan TP5100. Newton-Maxwell Journal of Physics, 6(2), 63–72. https://doi.org/10.33369/nmj.v6i2.40060

References

  1. S. Bak et al., “Structural Changes and Thermal Stability of Charged LiNi,” Appl. Mater. Interfaces, vol. 6, no. 24, pp. 22594–22601, 2014.
  2. S. Ma et al., “Temperature effect and thermal impact in lithium-ion batteries: A review,” Prog. Nat. Sci. Mater. Int., vol. 28, no. 6, pp. 653–666, 2018.
  3. D. Deng, “Li-ion batteries: Basics, progress, and challenges,” Energy Sci. Eng., vol. 3, no. 5, pp. 385–418, 2015.
  4. R. Kristiyono, B. Nugroho, and B. Supriyanto, “Automatic Charging Battery Lithium Untuk Kendaraan Listrik,” Teknika, vol. 7, no. 4, pp. 236–242, 2022.
  5. A. Anshori, B. Siswojo, and R. N. Hasanah, “Teknik Fast Charging Baterai Lithium-Ion Menggunakan Logika Fuzzy,” J. Ecotipe (Electronic, Control. Telecommun. Information, Power Eng., vol. 7, no. 1, pp. 26–37, 2020.
  6. C. Shaputra and R. Rasyid, “Rancang Bangun Pembangkit Listrik Tenaga Ombak Berbasis Piezoelektrik dengan Modul Charging TP5100 pada Bangunan Groin Pemecah Ombak Pantai Padang,” J. Fis. Unand, vol. 8, no. 4, pp. 342–347, 2019.
  7. M. I. Fauzi, Y. Shalahuddin, and D. Erwanto, “Perancangan Solar Garden System untuk Penerangan dan Pengisian Daya Handphone pada Taman Terbuka Hijau,” Fuse-teknik Elektro, vol. 2, no. 2, p. 70, 2022.
  8. SAHADA, P. A. Topan, M. Hidayatullah, and D. Maulidyawati, “Analisis Nilai Resistansi Internal Sebagai Indikator State of Health (Soh) Pada Baterai Lithium Polymer (Li-Po) Menggunakan Resistor,” J. Altron; J. Electron. Sci. Energy Syst., vol. 2, no. 02, pp. 145–154, 2023.
  9. A. R. Hisan, I. P. Handayani, R. F. Iskandar, F. T. Elektro, and U. Telkom, “Perancangan Dan Realisasi Sistem Manajemen Termal Baterai Lithium Ion Menggunakan Metode Pendinginan Semi-Pasif Designing and Realization of Battery Thermal Management System,” e-Proceeding Eng., vol. 3, no. 3, pp. 4948–4955, 2016.
  10. A. Kurniawan, “Analisis Laju Perpindahan Panas pada Baterai Ion Lithium 18650 terhadap Beban Keluarannya dengan Metode Numerik,” J. Mech. Des. Test., vol. 2, no. 2, p. 87, 2020.
  11. Y. A. Kurnia Utama, “Perbandingan Kualitas Antar Sensor Suhu dengan Menggunakan Arduino Pro Mini,” e-NARODROID, vol. 2, no. 2, 2016.
  12. B. Y. Prasetyo, M. Arman, and G. P. Darmawan, “Perbandingan Karakteristik Sensor Temperatur LM35 dan DS18B20 Pada Simulator Cerobong Tata Udara,” Pros. Ind. Res. Work. Natl. Semin., vol. 13, no. 01, pp. 553–557, 2022.
  13. Wahyudi, Jumrianto , and A. Syakur, “Kalibrasi Sensor Tegangan dan Sensor Arus dengan Menerapkan Rumus Regresi Linear menggunakan Software Bascom AVR Info Articles,” J. Syst. Inf. Technol. Electron. Eng., vol. 1, no. 1, pp. 1–14, 2020 [Online]. Available: http://e-journal.ivet.ac.id/index.php/jsitee.
  14. Q. Zhang, H. Wang, J. Dong, G. Zhong, and X. Sun, “Prediction of Sea Surface Temperature Using Long Short-Term Memory,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1745–1749, 2017.
  15. G. M. Spinelli and Z. L. Gottesman, “A low-cost Arduino-based datalogger with cellular modem and FTP communication for irrigation water use monitoring to enable access to CropManage,” HardwareX, vol. 6, p. e00066, 2019.
  16. A. V. Rachmawati, M. Yantidewi, and Penelitian, “Analisis Kalibrasi Sensor BME280 dengan Pendekatan Regresi Linear pada Pengukuran Temperatur, Kelembaban Relatif, dan Titik Embun,” J. Kolaboratif Sains, vol. 7, no. 5, pp. 1589–1597, 2024.
  17. J. T. S. K. R. F. D. Unang Achlison, “Analisis Pengisian Baterai berbasis Arus dan Tegangan pada Baterai Kendaraan Listrik,” J. Elektron. Dan Komput., vol. 16, no. 2, pp. 430–433, 2023.
  18. Devyna Lufhf and B. Wahyudi, “Studi Optimasi Pengaruh Sisa Kapasitas dan Arus Pengisian Terhadap Keandalan Individu Baterai LiFePO4 3,2V 6AH,” J. Mech. Eng., vol. 1, no. 3, p. 10, 2024.
  19. G. J. Chen, C. L. Liu, Y. H. Liu, and J. J. Wang, “Implementation of Constant Temperature–Constant Voltage Charging Method with Energy Loss Minimization for Lithium-Ion Batteries,” Electron., vol. 13, no. 3, 2024.
  20. T. M. M. Heenan et al., “Mapping internal temperatures during high-rate battery applications,” Nature, vol. 617, no. 7961, pp. 507–512, 2023.