Main Article Content

Abstract





Pemanfaatan karbon aktif berbasis biomassa lokal sebagai bahan elektroda superkapasitor menawarkan alternatif berkelanjutan dalam teknologi penyimpanan energi. Artikel ini menyajikan tinjauan sistematis terhadap karakteristik fisik dan elektrokimia dari karbon aktif yang disintesis dari berbagai biomassa lokal, antara lain tandan kosong kelapa sawit (TKS), ampas biji kopi robusta, kulit durian, kulit pisang, sekam padi, dan batang jagung. Studi ini menganalisis data luas permukaan spesifik (BET), struktur pori, jenis aktivator kimia, serta performa kapasitansi dari masing-masing material. Hasil menunjukkan bahwa karbon dari ampas biji kopi dan TKS memiliki kinerja terbaik dengan kapasitansi spesifik masing-masing 130 F/g dan 107,83 F/g. Meskipun luas permukaan tinggi merupakan faktor penting, hasil juga menunjukkan bahwa distribusi pori, dominasi mikropori/mesopori, dan jenis aktivator kimia memiliki pengaruh yang signifikan terhadap performa elektroda. Oleh karena itu, pendekatan sintesis yang mempertimbangkan keseimbangan struktur pori dan aktivasi kimia menjadi strategi penting dalam optimalisasi material elektroda superkapasitor berbasis biomassa.





Keywords

superkapasitor karbon aktif biomassa lokal elektroda penyimpanan energi

Article Details

How to Cite
Muflihatun, M. (2025). Pemanfaatan Karbon Aktif Berbasis Biomassa Lokal sebagai Material Elektroda Superkapasitor: Review . Newton-Maxwell Journal of Physics, 6(1). https://doi.org/10.33369/nmj.v6i1.40787

References

  1. Y. Yang, S. Xia, P. Huang, and J. Qian, “Energy transition: Connotations, mechanisms and effects,” Energy Strategy Reviews, vol. 52, p. 101320, Mar. 2024, doi: 10.1016/j.esr.2024.101320.
  2. H. J. Kan and L. N. Tan, “The Influence of Wind–Solar Hybrid Generation System on Transmission Service Rate,” AMR, vol. 1070–1072, pp. 1472–1476, Dec. 2014, doi: 10.4028/www.scientific.net/AMR.1070-1072.1472.
  3. M. Zhang and L. Peng, “Research progress of biomass-derived carbon for the supercapacitors,” Mater. Res. Express, vol. 11, no. 1, p. 012004, Jan. 2024, doi: 10.1088/2053-1591/ad1013.
  4. Z. Li, D. Guo, Y. Liu, H. Wang, and L. Wang, “Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors,” Chemical Engineering Journal, vol. 397, p. 125418, Oct. 2020, doi: 10.1016/j.cej.2020.125418.
  5. Z. Zhai et al., “A review of carbon materials for supercapacitors,” Materials & Design, vol. 221, p. 111017, Sep. 2022, doi: 10.1016/j.matdes.2022.111017.
  6. Y. Liu, J. Chen, B. Cui, P. Yin, and C. Zhang, “Design and Preparation of Biomass-Derived Carbon Materials for Supercapacitors: A Review,” C, vol. 4, no. 4, p. 53, Sep. 2018, doi: 10.3390/c4040053.
  7. Jiunn Boon Yong, Lian See Tan, and Jully Tan, “Comparative life cycle assessment of biomass-based and coal-based activated carbon production,” PROGEE, vol. 20, no. 1, pp. 1–15, Aug. 2022, doi: 10.37934/progee.20.1.115.
  8. E. Taer, R. Taslim, Z. Aini, S. D. Hartati, and W. S. Mustika, “Activated carbon electrode from banana-peel waste for supercapacitor applications,” presented at the THE 6TH INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED PHYSICS (THE 6th ICTAP), Makassar, Indonesia, 2017, p. 040004. doi: 10.1063/1.4973093.
  9. C. Quan, R. Su, and N. Gao, “Preparation of activated biomass carbon from pine sawdust for supercapacitor and CO2 capture,” Int J Energy Res, vol. 44, no. 6, pp. 4335–4351, May 2020, doi: 10.1002/er.5206.
  10. R. Maniarasu, S. K. Rathore, and S. Murugan, “Biomass-based activated carbon for CO2 adsorption–A review,” Energy & Environment, vol. 34, no. 5, pp. 1674–1721, Aug. 2023, doi: 10.1177/0958305X221093465.
  11. W. Liu, J. Mei, G. Liu, Q. Kou, T. Yi, and S. Xiao, “Nitrogen-Doped Hierarchical Porous Carbon from Wheat Straw for Supercapacitors,” ACS Sustainable Chem. Eng., vol. 6, no. 9, pp. 11595–11605, Sep. 2018, doi: 10.1021/acssuschemeng.8b01798.
  12. V. Goodwin, P. Jitreewas, T. Sesuk, P. Limthongkul, and S. Charojrochkul, “Development of Modified Mesoporous Carbon from Palm oil Biomass for Energy Storage Supercapacitor Application,” IOP Conf. Ser.: Earth Environ. Sci., vol. 1199, no. 1, p. 012003, Jul. 2023, doi: 10.1088/1755-1315/1199/1/012003.
  13. A. Jain, C. Xu, S. Jayaraman, R. Balasubramanian, J. Y. Lee, and M. P. Srinivasan, “Mesoporous activated carbons with enhanced porosity by optimal hydrothermal pre-treatment of biomass for supercapacitor applications,” Microporous and Mesoporous Materials, vol. 218, pp. 55–61, Dec. 2015, doi: 10.1016/j.micromeso.2015.06.041.
  14. J. Wang et al., “Biomass derived carbon for energy storage devices,” J. Mater. Chem. A, vol. 5, no. 6, pp. 2411–2428, 2017, doi: 10.1039/C6TA08742F.
  15. G. Zhong et al., “Biomass-Derived Nitrogen-Doped Porous Carbons Activated by Magnesium Chloride as Ultrahigh-Performance Supercapacitors,” Ind. Eng. Chem. Res., vol. 59, no. 50, pp. 21756–21767, Dec. 2020, doi: 10.1021/acs.iecr.0c04173.
  16. S. Ghosh et al., “Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes,” Sci Rep, vol. 9, no. 1, p. 16315, Nov. 2019, doi: 10.1038/s41598-019-52006-x.
  17. Z. Li et al., “Carbonized Chicken Eggshell Membranes with 3D Architectures as High‐Performance Electrode Materials for Supercapacitors,” Advanced Energy Materials, vol. 2, no. 4, pp. 431–437, Apr. 2012, doi: 10.1002/aenm.201100548.
  18. A. B. Namazi, D. G. Allen, and C. Q. Jia, “Benefits of microwave heating method in production of activated carbon,” Can J Chem Eng, vol. 94, no. 7, pp. 1262–1268, Jul. 2016, doi: 10.1002/cjce.22521.
  19. M. Reza, L. Ernawati, M. D. Pusfitasari, N. Sylvia, A. H. Noor, and L. G. Ali, “KARAKTERISASI KARBON AKTIF DARI KULIT PISANG KEPOK SEBAGAI SUPERKAPASITOR,” vol. 16, no. 2, 2022.
  20. P. Febriyanto, J. Jerry, A. W. Satria, and H. Devianto, “PEMBUATAN DAN KARAKTERISASI KARBON AKTIF BERBAHAN BAKU LIMBAH KULIT DURIAN SEBAGAI ELEKTRODA SUPERKAPASITOR,” JIP UNTIRTA, vol. 8, no. 1, p. 19, Jun. 2019, doi: 10.36055/jip.v8i1.5439.
  21. A. Nurul Huda, I. Lestari, and S. Hidayat, “Pemanfaatan Karbon Aktif dari Sekam Padi Sebagai Elektroda Superkapasitor,” JIIF, vol. 6, no. 2, pp. 102–113, Aug. 2022, doi: 10.24198/jiif.v6i2.39639.
  22. A. D. Hardi, R. Joni, S. Syukri, and H. Aziz, “Pembuatan Karbon Aktif dari Tandan Kosong Kelapa Sawit sebagai Elektroda Superkapasitor,” JFU, vol. 9, no. 4, pp. 479–486, Jan. 2021, doi: 10.25077/jfu.9.4.479-486.2020.
  23. O. N. Tetra, S. Syukri, A. Santoni, D. Deswati, N. Fajarandi, and E. Emriadi, “Sintesis Karbon Aktif Dari Batang Jagung(Zea mays L.) dengan Metoda Dehidrasi Asam Untuk Aplikasi Elektroda Superkapasitor,” JFU, vol. 13, no. 6, pp. 834–842, Nov. 2024, doi: 10.25077/jfu.13.6.834-842.2024.
  24. R. Novitra, H. Aziz, and E. Taer, “Supercapactors based on active carbon from spent arabica coffee ground using NaOH activators,” J. Aceh Phys. Soc., vol. 11, no. 1, pp. 33–40, Jan. 2022, doi: 10.24815/jacps.v11i1.22227.
  25. A. Jamaluddin, A. D. Nursanti, A. Nur’aini, R. R. M. Putri, and M. U. Arshad, “Graphene as an Active Material for Supercapacitors: A Machine Learning Approach,” Indonesian J Appl Phys, vol. 13, no. 2, p. 305, Nov. 2023, doi: 10.13057/ijap.v13i2.76678.
  26. H. J. Zhao, D. L. Zhao, J. M. Zhang, and D. D. Zhang, “Ordered Mesoporous Carbon Nano Spheres as Electrode Material for Supercapacitors,” AMM, vol. 320, pp. 661–664, May 2013, doi: 10.4028/www.scientific.net/AMM.320.661.
  27. G. G. Jang, B. Song, K. Moon, C.-P. Wong, J. K. Keum, and M. Z. Hu, “Particle size effect in porous film electrodes of ligand-modified graphene for enhanced supercapacitor performance,” Carbon, vol. 119, pp. 296–304, Aug. 2017, doi: 10.1016/j.carbon.2017.04.023.
  28. Z. Chen et al., “High‐Performance Supercapacitors Based on Hierarchically Porous Graphite Particles,” Advanced Energy Materials, vol. 1, no. 4, pp. 551–556, Jul. 2011, doi: 10.1002/aenm.201100114.
  29. L. B. Fantin, D. S. Yoshikawa, E. Galego, and R. N. Faria, “Effects of Electrolyte Substitution on the Specific Capacitance and Equivalent Series Resistance of Energy Storage Electrochemical Supercapacitors,” MSF, vol. 1012, pp. 131–135, Oct. 2020, doi: 10.4028/www.scientific.net/MSF.1012.131.
  30. D. Jain, S. K. Tripathi, J. Kanungo, and B. L. Gupta, “Fabrication and characterization of supercapacitor comprising mango kernel derived electrode under different electrolyte systems,” Energy Storage, vol. 5, no. 3, p. e465, Apr. 2023, doi: 10.1002/est2.465.