Main Article Content

Abstract





This paper investigates relativistic corrections to the efficiency of Carnot engines in non-inertial frames, focusing on massive objects such as neutron stars and black holes.  The results of this study show that, in non-inertial frames, the local temperature and the efficiency of Carnot engines are influenced by rotation and linear acceleration. Using a relativistic approach, it is found that the efficiency correction depends on the acceleration and angular velocity parameters. Simulation results indicate that relativistic corrections become significant under extreme conditions, such as rapidly rotating neutron stars of about 10-4 to 10-3 or in strong gravitational fields around black holes of about O (1). This paper does not examine in detail the mass distribution, magnetic field effects on rotating neutron stars, or quantum effects on black holes. Instead, it focuses on estimating the Tolman temperature correction for non-inertial frames.





Keywords

Carnot engine efficiency non-inertial frame relativistic corrections Tolman temperature

Article Details

How to Cite
Achmad, A., Muflihatun, & Pratiwi, S. H. (2025). Estimasi Koreksi Relativistik pada Efisiensi Mesin Carnot dalam Kerangka Non-Inersia. Newton-Maxwell Journal of Physics, 6(2), 73–78. https://doi.org/10.33369/nmj.v6i2.41104

References

  1. L. Lusanna, “From Relativistic Mechanics towards Relativistic Statistical Mechanics,” Entropy, vol. 19, no. 9, p. 436, Aug. 2017, doi: 10.3390/e19090436.
  2. R. Falcone and C. Conti, “Frame dependence of the nonrelativistic limit of quantum fields,” Phys. Rev. D, vol. 107, no. 8, p. 085016, Apr. 2023, doi: 10.1103/PhysRevD.107.085016.
  3. S. G. Ghosh, R. Kumar, L. Tannukij, and P. Wongjun, “Rotating black strings in de Rham-Gabadadze-Tolley massive gravity,” Phys. Rev. D, vol. 101, no. 10, p. 104042, May 2020, doi: 10.1103/PhysRevD.101.104042.
  4. G. W. Gibbons, A. H. Mujtaba, and C. N. Pope, “Ergoregions in magnetized black hole spacetimes,” Class. Quantum Grav., vol. 30, no. 12, p. 125008, June 2013, doi: 10.1088/0264-9381/30/12/125008.
  5. M. Ramzan, “Decoherence and Multipartite Entanglement of Non-Inertial Observers,” Chinese Phys. Lett., vol. 29, no. 2, p. 020302, Feb. 2012, doi: 10.1088/0256-307X/29/2/020302.
  6. D. Alba, H. W. Crater, and L. Lusanna, “On the relativistic micro-canonical ensemble and relativistic kinetic theory for N relativistic particles in inertial and non-inertial rest frames,” Int. J. Geom. Methods Mod. Phys., vol. 12, no. 04, p. 1550049, Apr. 2015, doi: 10.1142/S0219887815500498.
  7. E. Muñoz and F. J. Peña, “Magnetically driven quantum heat engine,” Phys. Rev. E, vol. 89, no. 5, p. 052107, May 2014, doi: 10.1103/PhysRevE.89.052107.
  8. A. Purwanto, H. Sukamto, and B. A. Subagyo, “Quantum Carnot Heat Engine Efficiency with Minimal Length,” JMP, vol. 06, no. 15, pp. 2297–2302, 2015, doi: 10.4236/jmp.2015.615234.
  9. M. Y. Abd-Rabbou, A. U. Rahman, M. A. Yurischev, and S. Haddadi, “Comparative study of quantum Otto and Carnot engines powered by a spin working substance,” Phys. Rev. E, vol. 108, no. 3, p. 034106, Sept. 2023, doi: 10.1103/PhysRevE.108.034106.
  10. S. Çakmak, M. Çandır, and F. Altintas, “Construction of a quantum Carnot heat engine cycle,” Quantum Inf Process, vol. 19, no. 9, p. 314, Sept. 2020, doi: 10.1007/s11128-020-02831-1.
  11. B. Ram and B. R. Majhi, “Laws of thermodynamic equilibrium within first order relativistic hydrodynamics,” Annals of Physics, vol. 476, p. 169963, May 2025, doi: 10.1016/j.aop.2025.169963.
  12. J. Santiago, “On the Connections between Thermodynamics and General Relativity,” 2019, arXiv. doi: 10.48550/ARXIV.1912.04470.
  13. M. L. Bera, S. Julià-Farré, M. Lewenstein, and M. N. Bera, “Quantum heat engines with Carnot efficiency at maximum power,” Phys. Rev. Research, vol. 4, no. 1, p. 013157, Feb. 2022, doi: 10.1103/PhysRevResearch.4.013157.
  14. R. C. Tolman and P. Ehrenfest, “Temperature Equilibrium in a Static Gravitational Field,” Phys. Rev., vol. 36, no. 12, pp. 1791–1798, Dec. 1930, doi: 10.1103/PhysRev.36.1791.
  15. J. A. S. Lima, A. Del Popolo, and A. R. Plastino, “Thermodynamic equilibrium in general relativity,” Phys. Rev. D, vol. 100, no. 10, p. 104042, Nov. 2019, doi: 10.1103/PhysRevD.100.104042.
  16. W. M. Suen and K. Young, “Thermodynamic equilibrium in relativistic rotating systems,” Class. Quantum Grav., vol. 5, no. 11, pp. 1447–1457, Nov. 1988, doi: 10.1088/0264-9381/5/11/008.
  17. Sean M. Carroll, (2019) Spacetime and Geometry - An Introduction to General Relativity. 2nd ed.). Cambridge University Press.