Main Article Content

Abstract









The increasing demand for bone graft materials has driven the development of synthetic alternatives that closely mimic the mineral structure of natural bone and dental tissues. Hydroxyapatite (HAp) is a calcium phosphate material whose crystal structure closely resembles that of bone and dental tissue, making it highly suitable for various biomedical applications. In this study, calcium oxide (CaO) was obtained from calcined chicken eggshells, with calcination durations of 2, 3, and 4 hours, followed by the synthesis of HAp using the hydrothermal method at 160  for 24 hours. X-ray diffraction (XRD) analysis was performed to evaluate the effects of calcination time on crystallinity and crystallite size. The results showed that increasing the calcination time led to higher crystallinity, ranging from 46% to 54%. Crystallite size was estimated using three Scherrer-based methods. The straight-line Scherrer method produced values ranging from 1733.17 to 4621.8 nm, the average Scherrer method from 11.33 to 11.74 nm, and the modified Scherrer method from 8.49 to 9.11 nm. All three methods consistently indicated a decrease in crystallite size with longer calcination durations. These findings demonstrate that prolonged calcination enhances crystallinity and reduce crystallite size, underscoring the critical role of calcination time in shaping structural characteristics of HAp.









Keywords

Hydroxyapatite Chicken Eggshell Scherrer Approaches XRD

Article Details

How to Cite
Arsyad, Y. M., Mega Nurhanisa, Elsa Narulita, Ayunda Dwi Handayani, Frinelda Rehulina Barus, Tri Rahma Febrianti Maharani, Hilyana Agis Risla, Latifah Tri Amanda, Delia Amanda, & Zahraini Tasya Siregar. (2025). Dependence of Crystallinity and Crystallite Size of Hydroxyapatite from Chicken Eggshell on Calcination Time : A Comparative Study on Scherrer Approach . Newton-Maxwell Journal of Physics, 6(2), 79–86. https://doi.org/10.33369/nmj.v6i2.43228

References

  1. V. S. Kattimani, S. Kondaka, and K. P. Lingamaneni, “Hydroxyapatite–-Past, Present, and Future in Bone Regeneration,” Bone Tissue Regen. Insights, vol. 7, no. November, p. BTRI.S36138, 2016.
  2. H. Shi, Z. Zhou, W. Li, Y. Fan, Z. Li, and J. Wei, “Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction,” Crystals, vol. 11, no. 2, pp. 1–18, 2021.
  3. I. Ielo, G. Calabrese, G. De Luca, and S. Conoci, “Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics,” Int. J. Mol. Sci., vol. 23, no. 17, 2022.
  4. Y. Yusuf, D. U. Khasanah, F. Y. Syafaat, I. Pawarangan, M. Sari, and V. J. Mawuntu, “Hidroksiapatit berbahan dasar biogenik,” Gadjah Mada Univ. Press, no. June 2023, pp. 117–130, 2019.
  5. A. R. Noviyanti et al., “A novel hydrothermal synthesis of nanohydroxyapatite from eggshell-calcium-oxide precursors,” Heliyon, vol. 6, no. 4, p. e03655, 2020.
  6. S.-C. Wu, H.-C. Hsu, S.-K. Hsu, C.-P. Tseng, and W.-F. Ho, “Effects of calcination on synthesis of hydroxyapatite derived from oyster shell powders,” J. Aust. Ceram. Soc., vol. 55, no. 4, pp. 1051–1058, 2019.
  7. A. R. Nurhidayat, A. P. Bayuseno, R. Ismail, and R. B. Taqriban, “Review of the temperature and holding time effects on hydroxyapatite fabrication from the natural sources,” J. Biomed. Sci. Bioeng., vol. 1, no. 1, pp. 27–31, 2021.
  8. P. H. Yanti and Y. Gandi, “Pengaruh Waktu Kalsinasi Terhadap Sifat Fisika-Kimia Hidroksiapatit Dari Cangkang Geloina Coaxans,” Chem. Prog., vol. 13, no. 2, pp. 102–106, 2020.
  9. E. D. Prasetyawan, “Pengaruh Waktu Kalsinasi Pada Sintesis Hidroksiapatit Berbasis Cangkang Telur Ayam Untuk Aplikasi Biomaterial,” Jtm, vol. 2, pp. 17–22, 2023.
  10. A. K. Nayak, “Hydroxyapatite Synthesis Methodologies: An Overview,” Int. J. ChemTech Res., vol. 2, no. 2, pp. 903–907, 2010.
  11. B. S. Nugroho, D. Wahyuni, A. Asri, and A. Lirawanto, “Effects Of Calcination Temperature on Ca/P Ratio of Calcium Phosphate from Freshwater Snails (Sulcospira Testudinaria) Shells,” J. Phys. Conf. Ser., vol. 2945, no. 1, pp. 1–6, 2025.
  12. G. M. Poralan, J. E. Gambe, E. M. Alcantara, and R. M. Vequizo, “X-ray diffraction and infrared spectroscopy analyses on the crystallinity of engineered biological hydroxyapatite for medical application,” IOP Conf. Ser. Mater. Sci. Eng., vol. 79, no. 1, 2015.
  13. M. Rabiei, A. Palevicius, A. Monshi, S. Nasiri, A. Vilkauskas, and G. Janusas, “Comparing methods for calculating nano crystal size of natural hydroxyapatite using X-ray diffraction,” Nanomaterials, vol. 10, no. 9, pp. 1–21, 2020.
  14. A. Monshi, M. R. Foroughi, and M. R. Monshi, “Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD,” World J. Nano Sci. Eng., vol. 02, no. 03, pp. 154–160, 2012.
  15. N. A. S. Mohd Pu’ad, J. Alipal, H. Z. Abdullah, M. I. Idris, and T. C. Lee, “Synthesis of eggshell derived hydroxyapatite via chemical precipitation and calcination method,” Mater. Today Proc., vol. 42, no. January 2021, pp. 172–177, 2019.
  16. F. S. Irwansyah, A. F. R. Nurizal, E. P. Hadisantoso, and S. B. M. Zain, “Characterization and Application of Hydroxyapatite From Chicken Egg Shell with Green Template as a Potential Drug Delivery System,” J. Kim. Val., vol. 10, no. 2, pp. 260–268, 2024.
  17. N. H. Thang and D. T. Phong, “Characterizations of hydroxyapatite synthesized from calcium hydroxide and phosphoric acid as adsorbents of lead in wastewater,” Mater. Sci. Forum, vol. 991 MSF, pp. 159–165, 2020.
  18. A. Putkham, S. Ladhan, and A. I. Putkham, “Changing of particle size and pore structures of calcium oxide during calcinations of industrial eggshell waste,” Mater. Sci. Forum, vol. 998 MSF, pp. 90–95, 2020.
  19. N. Méndez-Lozano, M. Apátiga-Castro, K. M. Soto, A. Manzano-Ramírez, M. Zamora-Antuñano, and C. Gonzalez-Gutierrez, “Effect of temperature on crystallite size of hydroxyapatite powders obtained by wet precipitation process,” J. Saudi Chem. Soc., vol. 26, no. 4, 2022.
  20. C. Rachmantio and M. A. Irfai, “Pengaruh Suhu Dan Waktu Kalsinasi Terhadap Kemurnian Hidroksiapatit Berbasis Cangkang Kerang Hijau Untuk Aplikasi Pada Bone Tissue Engineering,” Jtm, vol. 11, no. 1, pp. 1–6, 2023.
  21. D. F. Fitriyana et al., “The Effect of Temperature on the Hydrothermal Synthesis of Carbonated Apatite From Calcium Carbonate Obtained From Green Mussels Shells,” ARPN J. Eng. Appl. Sci., vol. 18, no. 11, pp. 1215–1224, 2023.
  22. A. Yusuf, N. M. Muhammad, A. R. Noviyanti, and Risdiana, “The effect of temperature synthesis on the purity and crystallinity of hydroxyapatite,” Key Eng. Mater., vol. 860 KEM, pp. 228–233, 2020.
  23. A. H. Diputra, I. K. Hariscandra Dinatha, and Y. Yusuf, “A comparative X-ray diffraction analysis of Sr2+substituted hydroxyapatite from sand lobster shell waste using various methods,” Heliyon, vol. 11, no. 2, p. e41781, 2025.
  24. Y. Rizkayanti and Y. Yusuf, “Effect of temperature on syntesis of hydroxyapatite from cockle shells (Anadara Granosa),” Int. J. Nanoelectron. Mater., vol. 11, no. April, pp. 43–50, 2018.
  25. S. Rahavi, A. Monshi, R. Emadi, A. Doostmohammadi, and H. Akbarian, “Determination of crystallite size in synthetic and natural hydroxyapatite: A comparison between XRD and TEM results,” Adv. Mater. Res., vol. 620, pp. 28–34, 2013.