Main Article Content
Abstract
Article Details
- Seluruh materi yang terdapat dalam situs ini dilindungi oleh undang-undang. Dipersilahkan mengutip sebagian atau seluruh isi situs web ini sesuai dengan ketentuan yang berlaku.
- Apabila anda menemukan satu atau beberapa artikel yang terdapat dalam Jurnal Pseudocode yang melanggar atau berpotensi melanggar hak cipta yang anda miliki, silahkan laporkan kepada kami, melalui email pada Priciple Contact.
- Aspek legal formal terhadap akses setiap informasi dan artikel yang tercantum dalam situs jurnal ini mengacu pada ketentuan lisensi Creative Commons Atribusi-ShareAlike (CC-BY-SA).
- Semua Informasi yang terdapat di Jurnal Pseudocode bersifat akademik. Jurnal Pseudocode tidak bertanggung jawab terhadap kerugian yang terjadi karana penyalah gunaan informasi dari situs ini.
References
- M. N, R. A, R. S., and S. Stang, “Karakteristik Dan Prevalensi Risiko Penyakit Kardiovaskular Pada Tukang Masak Warung Makan Di Wilayah Kerja Puskesmas Tamalanrea,” J. Kesehat., vol. 11, no. 1, pp. 30–38, 2018, doi: 10.24252/kesehatan.v11i1.5029.
- Kemenkes RI, KMK No. 854 ttg Cardiovasular Diseases Guideline.pdf. 2009, p. 32.
- I. Ayu, E. Widiastuti, R. Cholidah, G. W. Buanayuda, and I. B. Alit, “Deteksi Dini Faktor Risiko Penyakit Kardiovaskuler pada Pegawai Rektorat Universitas Mataram,” J. Pengabdi. Magister Pendidik. IPA, vol. 4, pp. 137–142, 2021.
- A. B. Wibisono and A. Fahrurozi, “Perbandingan Algoritma Klasifikasi Dalam Pengklasifikasian Data Penyakit Jantung Koroner,” J. Ilm. Teknol. dan Rekayasa, vol. 24, no. 3, pp. 161–170, 2019, doi: 10.35760/tr.2019.v24i3.2393.
- Fadhilah Ahmad, N. H. Ismail, and Azwa Abdul Aziz, “The prediction of students’ academic performance using classification data mining techniques,” Appl. Math. Sci., vol. 9, no. 129, pp. 6415–6426, 2015, doi: 10.12988/ams.2015.53289.
- Y. Pristyanto, “Penerapan Metode Ensemble Untuk Meningkatkan Kinerja Algoritme Klasifikasi Pada Imbalanced Dataset,” J. TEKNOINFO, vol. 13, no. 1, pp. 11–16, 2019, doi: 10.33365/jti.
- I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011.
- V. V. Ramalingam, A. Dandapath, and M. Karthik Raja, “Heart disease prediction using machine learning techniques: A survey,” Int. J. Eng. Technol., vol. 7, no. 2.8 Special Issue 8, pp. 684–687, 2018, doi: 10.14419/ijet.v7i2.8.10557.
- P. S. Kohli and A. L. Regression, “Application of Machine Learning in Disease Prediction,” in 2020 IEEE 5th International Conference on Computing Communication and Automation, ICCCA 2020, 2020, pp. 1–4.
- C. S. Wu, M. Badshah, and V. Bhagwat, “Heart disease prediction using data mining techniques,” in ACM International Conference Proceeding Series, 2019, pp. 7–11, doi: 10.1145/3352411.3352413.
- D. Chicco and G. Jurman, “Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone,” BMC Med. Inform. Decis. Mak., vol. 20, no. 1, pp. 1–16, 2020, doi: 10.1186/s12911-020-1023-5.
- N. Chanamarn, K. Tamee, and P. Sittidech, “Stacking technique for academic achievement prediction,” Int. Work. Smart Info-Media Syst. Asia (SISA 2016), no. Sisa 2016, pp. 14–17, 2016.
- J. Han, M. Kamber, and J. Pei, Data Mining : Concept and Techniques, Third Edit. Massachusetts: Morgan Kauffman, 2011.
- Q. Wang, “A hybrid sampling SVM approach to imbalanced data classification,” Abstr. Appl. Anal., vol. 2014, 2014, doi: 10.1155/2014/972786.
References
M. N, R. A, R. S., and S. Stang, “Karakteristik Dan Prevalensi Risiko Penyakit Kardiovaskular Pada Tukang Masak Warung Makan Di Wilayah Kerja Puskesmas Tamalanrea,” J. Kesehat., vol. 11, no. 1, pp. 30–38, 2018, doi: 10.24252/kesehatan.v11i1.5029.
Kemenkes RI, KMK No. 854 ttg Cardiovasular Diseases Guideline.pdf. 2009, p. 32.
I. Ayu, E. Widiastuti, R. Cholidah, G. W. Buanayuda, and I. B. Alit, “Deteksi Dini Faktor Risiko Penyakit Kardiovaskuler pada Pegawai Rektorat Universitas Mataram,” J. Pengabdi. Magister Pendidik. IPA, vol. 4, pp. 137–142, 2021.
A. B. Wibisono and A. Fahrurozi, “Perbandingan Algoritma Klasifikasi Dalam Pengklasifikasian Data Penyakit Jantung Koroner,” J. Ilm. Teknol. dan Rekayasa, vol. 24, no. 3, pp. 161–170, 2019, doi: 10.35760/tr.2019.v24i3.2393.
Fadhilah Ahmad, N. H. Ismail, and Azwa Abdul Aziz, “The prediction of students’ academic performance using classification data mining techniques,” Appl. Math. Sci., vol. 9, no. 129, pp. 6415–6426, 2015, doi: 10.12988/ams.2015.53289.
Y. Pristyanto, “Penerapan Metode Ensemble Untuk Meningkatkan Kinerja Algoritme Klasifikasi Pada Imbalanced Dataset,” J. TEKNOINFO, vol. 13, no. 1, pp. 11–16, 2019, doi: 10.33365/jti.
I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011.
V. V. Ramalingam, A. Dandapath, and M. Karthik Raja, “Heart disease prediction using machine learning techniques: A survey,” Int. J. Eng. Technol., vol. 7, no. 2.8 Special Issue 8, pp. 684–687, 2018, doi: 10.14419/ijet.v7i2.8.10557.
P. S. Kohli and A. L. Regression, “Application of Machine Learning in Disease Prediction,” in 2020 IEEE 5th International Conference on Computing Communication and Automation, ICCCA 2020, 2020, pp. 1–4.
C. S. Wu, M. Badshah, and V. Bhagwat, “Heart disease prediction using data mining techniques,” in ACM International Conference Proceeding Series, 2019, pp. 7–11, doi: 10.1145/3352411.3352413.
D. Chicco and G. Jurman, “Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone,” BMC Med. Inform. Decis. Mak., vol. 20, no. 1, pp. 1–16, 2020, doi: 10.1186/s12911-020-1023-5.
N. Chanamarn, K. Tamee, and P. Sittidech, “Stacking technique for academic achievement prediction,” Int. Work. Smart Info-Media Syst. Asia (SISA 2016), no. Sisa 2016, pp. 14–17, 2016.
J. Han, M. Kamber, and J. Pei, Data Mining : Concept and Techniques, Third Edit. Massachusetts: Morgan Kauffman, 2011.
Q. Wang, “A hybrid sampling SVM approach to imbalanced data classification,” Abstr. Appl. Anal., vol. 2014, 2014, doi: 10.1155/2014/972786.